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Abstract.

A derivative-free framework for optimizing a non-smooth range-based con-
trast function in order to estimate independent components is presented.
The proposed algorithm employs the von-Mises Fisher (vMF) distribution
to draw random samples in the cross-entropy (CE) method, thereby in-
trinsically maintaining the unit-norm constraint that removes the scaling
indeterminacy in independent component analysis (ICA) problem. Empir-
ical studies involving natural images show how this approach outperforms
popular schemes [1] in terms of the separation performance.

1 Introduction

The separation performance of independent component analysis (ICA) relies on
the choice of the contrast function as well as the optimization strategy. Even
though a source adaptive contrast function yields more accurate source estimates
than surrogate functions, the former suffers from computational overheads. Fur-
thermore, even the typical criterion—the Shannon-entropy-based mutual infor-
mation (MI)—combined with a local optimization strategy will not guarantee the
recovery of sources due to the presence of mixing local optima. Several attempts
to develop criteria free of mixing local optima encountered other implementation
issues, e.g., the kurtosis-based contrast is not robust against outliers [2].
Amidst a myriad of contrast functions proposed, the range-based contrast
introduced in [3] and investigated in [1] is endowed with the discriminacy prop-
erty—being devoid of mixing local optima—meaning that each local optimum
of the function corresponds to a satisfactory solution. Besides, it befits well
with the boundedness of sources in signal/image applications and can also be
efficiently estimated without much computational effort. Nevertheless, on the
downside, the range-based contrast is non-smooth, and finding a good estimate
of its derivative is difficult since its estimation is based on order statistics. Conse-
quently, one cannot easily rely on a gradient-based algorithm in order to optimize
the range-based contrast function. Moreover, the local optima of the contrast
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estimated from a finite sample set cannot be expected to be perfectly unmixing,
hence favoring convergence to global optimum may still offer an advantage.

In keeping with these considerations, we propose to optimize the range-based
contrast using a derivative-free probabilistic approach, namely, the cross-entropy
(CE) optimizer. The crucial choice in the CE design is the probability dis-
tribution function (pdf) depending upon the nature of the optimization prob-
lem. Premised on the underlying geometry of the ICA problem stemming from
the unit-norm constraint of the independent components, the von-Mises Fisher
(vMF) distribution is used in conjunction with the CE algorithm in the present
work to handle the constraint intrinsically. It is remarked that the vMF distri-
bution has not yet been studied in the CE context, as far as we are aware. The
paper concludes with experimental results wherein the solution quality in the
CE method surpasses the outcome of the state-of-the-art approaches [1].

2 Preliminaries

Given a random vector m € R", ICA estimates an unmixing matrix X € R™"*"
with unit-norm columns such that the n components of b = XTm are maximally
independent as measured by some contrast function. We adopt the contrast
function proposed in [3] and [8] for recovering the original sources from the
observed data, since it possesses desirable contrast properties and is appropriate
for the bounded sources assumption in natural images. For completeness sake,
the contrast function based on a range estimation approach using order statistics
is restated from [3]: f(X) := log|det X| — >"}'_, log R(x; m), where R(-) is the
range function and x; € R™ is the kth column vector of X. An estimate of
the range of a random variable Y [8], that remains insensitive to noise and

outliers, based on an ordered finite sequence of observations y,, s = 1,2,...,5,
is R(Y) := L™ R.(Y) with R,.(Y) := y(s—r41) — Y(r). Given the value of S,

m can be empirically determined [8] as m(S) = max(1, [R{(Z28)0-65} — 4.5]),
where 1) denotes the nearest integer to 1.

Our contribution is to estimate X using a CE algorithm which samples from
the vMF distribution in order to generate candidate solutions. The rationale
behind this is that the set of N samples represents feasible unmixing matrices
X; = [xl’i Xoi xnﬂ-] with column vectors x,; € R", &k = 1,2,...,n
and i = 1,2,..., N, in the ICA problem such that ddiag(X}X;) = I, and
rk(X;) = n, where n denotes the number of sources to be estimated, ddiag(-)
represents the diagonal matrix whose diagonal elements are those of the matrix
in the argument, rk(-) is the matrix rank and I, is the n x n identity matrix.
Note that the X;’s are considered to be square matrices here, since the number of
observed variables is assumed to be equal to the number of underlying sources.
Following the definition of X;, the columns of the X;’s are constrained to be
unit-norm vectors, i.e., ||Xj |2 = 1; this means that x;; must lie on the unit
hypersphere S”~!. It can readily be seen that the ICA unit-norm constraint is
implicitly met when each column vector of the random samples, x;,;, is drawn
from the vMF distribution in the n-dimensional space.
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Formally the vMF distribution of an n-variate unit random vector x is defined
as
MF(x; 1. ) = ea(R)e™ %, (1)

which is parameterized by the unit-norm mean direction g and the concentration
parameter k > 0; ¢, (k) is the normalizing constant for the density function given

by ¢, (k) = %, where ['(+) is the well-known Gamma function and

Is(k) denotes the modified Bessel function of the first kind. & characterizes
the concentration of the unit vectors drawn according to the probability in (1)
centered around p. x = 0 implies that (1) reduces to the uniform density on
S"—1 and as k — oo, the distribution degenerates to point mass at p.

3 CE method employing vMF distribution

The CE' optimization is an iterative procedure consisting of the following two
steps: (i) a random sample of candidate solutions is generated from a parame-
terized probability distribution and evaluated using the objective function (here
termed as the contrast function); (ii) a subset of “elite samples”, selected based
on the objective function value, is used to update the parameters of the sam-
pling distribution. This parameter update scheme will preserve the probability
of producing “better” solutions in the subsequent iteration.

Unlike the conventional CE approach in [4], where the pdf’s are considered to
be Gaussians, we work with the vMF pdf’s defined earlier, and the parameters of
the distributions—p’s and k’s—are updated based on the best performing subset
of samples ((2) and (3)) at each iterative step t. What follows is the description
of the algorithm (see Algorithm 1 below) with implementation subtleties. In
the initialization step ¢ = 0, fio,r and kg corresponding to the parameters of
the vMF distribution for generating the kth column of the samples are taken
as the canonical basis vector e; and one, respectively; whereas for ¢ > 0, the
kth column of a random sample is drawn from the vMF, MF(f; 1, /¢ 1), with
fii; and Ay being the estimates of p and & for column k at iteration ¢. In
the sequel, the generation of random unit n-dimensional vectors following the
vMF on the hypersphere S"~! by a sampling scheme as suggested by Wood [5] is
presented. This procedure generates a unit vector v sampled uniformly from the
hypersphere in R"~! and a scalar random variable w with range (—1, 1), whose
density function is proportional to (1 — wg)(”*g)ﬂe"w, using rejection sampling.
Consequently the unit vector, z = ((1—w?)Y/?vT,w)T, follows the vMF distribu-
tion with modal direction (0,0,...,1)T and x; then x = Az has the vMF distri-
bution, MF(u, k), where A is any orthogonal matrix with the last column being
. The samples from the desired vMF distributions are used to evaluate the ob-
jective function, and subsequently the resulting costs f(X1), f(X2),..., f(Xn)
are sorted to identify a smaller subset of Ngjte = pINV elite samples with better

IThe name “cross-entropy” originates from the fact that traditionally a metric based on
the Kullback-Leibler divergence is employed to control the parameter update, and this should
not be confused with entropy-based contrast functions.
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solutions. Notice that p € (0,1) determines the size of the elite population and
their indices Z are recorded as well. In the ensuing step, the parameters of the
vMF distribution for sampling the kth column of the candidate solutions are up-
dated to be the maximum-likelihood estimates (MLESs) from the elite samples,
fue and Ry g, as given in [6] and [7], respectively. By omitting the iteration and
column indices for convenience, the MLEs of the distribution pertaining to any
one of the columns of samples can be stated as

ﬂ, _ ZiEI Xi . F= R(n __RQ) (2)
1 ez Xill’ 1-R* "’
5 I iezxll . : : .
where R = ———=——_ Note that k¥ above is not the true MLE estimate, which

n
is difficult to compute, but rather the empirically determined approximation in
[7]. To avoid convergence to a wrong solution that is feared to happen sometimes
in the early stages of optimization, the smoothed update expressions

o=t + (1 — )1k Reg = Bikere + (1 — Be)Re—1k (3)

are applied. The fixed smoothing parameter « lies in the interval [0.5,0.9] in the
conventional setting, whereas the dynamic smoothing parameter (3, is expressed
as By = B — 0 (1 — %)q with ¢ being an integer typically between 5 and 10,
and the smoothing constant 3 is chosen in the range [0.8,0.99]. The dynamic
smoothing of &, is intended to avoid premature convergence to a degenerate
distribution, which otherwise results in a sub-optimal solution. The iterative
procedure is halted when all the &, ;,’s exceed a convergence threshold 7, implying
that further progress is not feasible since all the pdf’s are degenerate to point
mass at [ﬂt,l feo - ;lfn] The step-wise implementation procedure of the
vMF-CE algorithm is concisely presented in Algorithm 1.

Algorithm 1 : The vMF-CE algorithm for the range-based ICA estimation.
Input: range-based contrast function f, elite sample size p € (0,1), sample
size N and convergence threshold 7.

Output: minimum of f

Initialization: ¢ :=0; fi; ) < e and Ay <~ 1 for k=1,2,...,n.
while mkin ke <7 do
t:=t+1.
Draw random samples X; := [Xl,i Xo xnﬂ»], where i =1,2,..., N,

and each xy; ~ MF(fty—1 1, Re—1) for k=1,2,...,n.
Evaluate f at X1,Xa,..., Xy, and record the indices Z of pN samples for
which f(Xz) < f(}(j)7 Viel, g §§ 7.
Set X* +— X;«, where i* € 7 satisfies f(X;«) < f(X;), Vi € Z.
Update fi; 5 and &y for k =1,2,...,n following (2) and (3).
end while
return minimum X*.
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4 Simulation using natural images

Dimension PI (mean-+tstd.dev.)
(n) SWICA NOSWICA vMF-CE
4 —9.58+£5.52 | —9.54£6.60 | —19.96 +=8.95
5 —5.505+4.18 | —3.38+£4.47 | —15.94+7.72
6 —1.474+3.21 | —=0.02+3.31 | —12.03+6.69
7 0.54 £2.80 245+2.61 | —11.42+5.60
8 249 +£2.31 4.49 +2.02 —9.02 +4.58
9 4.31+£1.72 5.54 +£1.91 —8.09 + 3.66

Table 1: Mean PI values of the SWICA, NOSWICA and vMF-CE. The values
in bold face represent the minimum obtained among the experimented schemes.
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Fig. 1: (a) Mixed images. (b)-(d) Reconstructed images with the unmixing
matrices having the PI values, 1.34, —2.07 and —16.08, estimated by the SWICA,
NOSWICA and vMF-CE, respectively, followed by reordering.

We performed a simulation study involving 12 natural images taken from
the MATLAB Image Processing Toolbox, wherein all the pixel images were
resized to have 200 x 200 pixels each. By concatenating the pixels in each
image column-wise, 12 S-dimensional data vectors are obtained, with § =
40,000. During every trial, n images from the pool of 12 images were ran-
domly chosen, where n varies from four to nine. The n S-dimensional data
vectors were first mixed by a randomly generated non-orthogonal mixing ma-
trix in R™*™, and then whitened as this ICA preprocessing provides a good
initialization for the ensuing optimization process. Subsequently, the whitened
mixture was supplied to the following optimizers to estimate the unmixing ma-
trix: (i) SWICA [8], (ii) NOSWICA [9] and (iii) vMF-CE algorithm. The sep-
aration performance of the aforementioned ICA algorithms was assessed over
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100 trials for each value of n using the performance index (PI) [10] defined as
PI = 201log;, (% (Z?Zl (Z;;l ﬁﬂml — 1))), where ¢;; is the (i, j)th element
of the global system matrix Q = XTVW, with V and W being the whitening
and mixing matrices, respectively. The parameter values used in the simulation
study are listed below: N = 10 X n, Nejjte = 10, « = 0.8, = 0.7, ¢ = 5 and
7 = 10*. The experimental results recorded in Table 1 indicate that the vMF-
CE yields lower PI values compared to the SWICA and NOSWICA for all the
dimensions (n = 4,5,...,9). An important observation is that the separation
performance of vMF-CE suffers less from the “curse of dimensionality” [1] than
the rest, though it incurs high computational overheads. It is noteworthy to
mention that in 83, 93 and 98 percent of the total test cases for n = 4,5 and 6,
respectively, and in all the test cases for n = 7,8 and 9, the PI is significantly less
for the vMF-CE than the methods reported in the literature. To demonstrate a
substantial improvement in the ICA estimation with the proposed approach sub-
jectively, the reconstructed sources from the investigated schemes for a specific
instance (n = 6) are shown in Fig. 1; the PI between the true and the esti-
mated sources are provided alongside to bear evidence. Finally, in agreement
with the findings in [9], we observed in experiments (omitted for brevity) that
NOSWICA—which itself is outperformed by the proposed vMF-CE—outclasses
the popular FastICA and Joint Approximated Diagonalization of Eigenmatrices
(JADE) algorithm in terms of solution quality.
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