
A variable projection method for block term

decomposition of higher-order tensors

Guillaume Olikier1, P.-A. Absil1, and Lieven De Lathauwer2 ∗

1- Université catholique de Louvain - ICTEAM Institute
B-1348 Louvain-la-Neuve - Belgium

2- KU Leuven - Electrical Engineering Department (ESAT)
B-3000 Leuven - Belgium

Abstract. Higher-order tensors have become popular in many areas of
applied mathematics such as statistics, scientific computing, signal pro-
cessing or machine learning, notably thanks to the many possible ways of
decomposing a tensor. In this paper, we focus on the best approximation
in the least-squares sense of a higher-order tensor by a block term decom-
position. Using variable projection, we express the tensor approximation
problem as a minimization of a cost function on a Cartesian product of
Stiefel manifolds. We present numerical experiments where variable pro-
jection makes a steepest-descent method approximately twice faster.

1 Introduction

Higher-order tensors have found numerous applications in signal processing and
machine learning thanks to the many tensor decompositions available [1, 2]. In
this paper, we focus on a recently introduced tensor decomposition called block
term decomposition (BTD) [3, 4, 5]. The interest of working with BTD in blind
signal separation was outlined in [6] and more specific examples are discussed
in [7, 8, 9].

The BTD unifies the two most well known tensor decompositions which are
the Tucker decomposition and the canonical polyadic decomposition (CPD). It
also gives a unified view on how the basic concept of rank can be generalized
from matrices to tensors. While in CPD, as well as in classical matrix decom-
positions, the components are rank-one terms, i.e., “atoms” of data, the terms
in a BTD have “low” (multilinear) rank and can be thought of as “molecules”
(consisting of several atoms) of data. Rank-one terms can only model data com-
ponents that are proportional along columns, rows, . . . and this assumption may
not be realistic. On the other hand, block terms can model multidimensional

∗This work was supported by (1) “Communauté française de Belgique - Actions de
Recherche Concertées” (contract ARC 14/19-060), (2) Research Council KU Leuven: C1
project C16/15/059-nD, (3) F.W.O.: project G.0830.14N, G.0881.14N, (4) the Belgian Federal
Science Policy Office: IUAP P7 (DYSCO II, Dynamical systems, control and optimization,
2012-2017), (5) the Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschap-
pelijk Onderzoek – Vlaanderen under EOS Project no 30468160, (6) EU: The research leading
to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Advanced Grant: BIOTEN-
SORS (no. 339804). This paper reflects only the authors’ views and the Union is not liable
for any use that may be made of the contained information.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

515

sources, variations around mean activity, mildly nonlinear phenomena, drifts of
setting points, frequency shifts, mildly convolutive mixtures, and so on. Such a
molecular analysis is not possible in the matrix setting. Furthermore, it turns
out that, like CPDs, BTDs are still unique under mild conditions [4, 7].

In practice, it is more frequent to approximate a tensor by a BTD than to
compute an exact BTD. More precisely, the problem of interest is to compute the
best approximation in the least-squares sense of a higher-order tensor by a BTD.
Only a few algorithms are currently available for this task. The Matlab toolbox
Tensorlab [10] proposes the two following functions: (i) btd minf uses L-BFGS
with dogleg trust region (a quasi-Newton method), (ii) btd nls uses nonlinear
least squares by Gauss–Newton with dogleg trust region. Another available algo-
rithm is the alternating least squares algorithm introduced in [5]. This algorithm
is not included in Tensorlab and does not work better than btd nls in general.

In this paper, we show that the performance of numerical methods can be
improved using variable projection. Variable projection consists in exploiting
the fact that, when the optimal value of some of the optimization variables
is easy to find when the others are fixed, this optimal value can be injected
in the objective function, yielding a new optimization problem where only the
other variables appear. This technique has already been applied to the Tucker
decomposition in [11] and exploited in [12, 13]. Here we extend it to the BTD
approximation problem which is then expressed as a minimization of a cost
function on a Cartesian product of Stiefel manifolds. Numerical experiments
show that the gradient algorithm is sped up by almost a factor 2 for BTDs of
two terms. This suggests that more sophisticated optimization algorithms such
as those used in the Tensorlab functions could give much better performance if
they were combined with variable projection. In the sequel, we focus on third-
order tensors for simplicity but the generalization to tensors of any order is
straightforward.

2 Preliminaries and notation

We let RI1×I2×I3 denote the set of real third-order tensors of size (I1, I2, I3). In
order to improve readability, vectors are written in bold-face lower-case (e.g., a),
matrices in bold-face capitals (e.g., A), and higher-order tensors in calligraphic
letters (e.g., A). For n ∈ {1, 2, 3}, the mode-n vectors of A ∈ R

I1×I2×I3

are obtained by varying the nth index while keeping the other indices fixed.
The mode-n rank of A, denoted rankn(A), is the dimension of the linear space
spanned by its mode-n vectors. The multilinear rank of A is the triple of the
mode-n ranks. The mode-n product of A by B ∈ R

Jn×In , denoted A ·n B, is
obtained by multiplying all the mode-n vectors of A by B. We endow R

I1×I2×I3

with the standard inner product, defined by

〈A,B〉 :=
I1∑

i1=1

I2∑
i2=1

I3∑
i3=1

A(i1, i2, i3)B(i1, i2, i3), (1)

and we let ‖·‖ denote the induced norm, i.e., the Frobenius norm.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

516

3 Variable projection

Let A ∈ R
I1×I2×I3 . Consider positive integersR and Ri such that Ri ≤ ranki(A)

for each i ∈ {1, 2, 3} and m := I1I2I3 ≥ RR1R2R3 =: n. The approximation
of A by a BTD of R terms of multilinear rank (R1, R2, R3) is a nonconvex
minimization problem which can be expressed using variable projection as

min
S,U,V,W

∥∥∥∥∥A−
R∑

r=1

Sr ·1 Ur ·2 Vr ·3 Wr

∥∥∥∥∥

2

︸ ︷︷ ︸
=:fA(S,U,V,W)

= min
U,V,W

min
S

fA(S,U,V,W)
︸ ︷︷ ︸

=:gA(U,V,W)

(2)

subject to the constraints Ur ∈ St(R1, I1), Vr ∈ St(R2, I2) and Wr ∈ St(R3, I3)
for each r ∈ {1, . . . , R}, where given integers p ≥ q ≥ 1 we let St(q, p) denote
the Stiefel manifold, i.e.,

St(q, p) := {U ∈ R
p×q : UTU = Iq}. (3)

A schematic representation of the BTD approximation problem is given in Fig. 1.
The tensors Sr are called the core tensors while the matrices Ur,Vr,Wr are
referred to as the factor matrices.

A ≈
S1

U1

V1

W1

+ · · ·+
SR

UR

VR

WR

Fig. 1: Schematic representation of the BTD approximation problem.

Using vectorization, it can be shown that computing gA(U,V,W) is a least
squares problem; we denote its minimizer by S∗(U,V,W).1 Thus,

gA(U,V,W) = fA(S∗(U,V,W),U,V,W). (4)

Computing the partial derivatives of gA reduces to the computation of partial
derivatives of fA. Indeed, using the first-order optimality condition

∂fA(S,U,V,W)

∂S
∣∣∣∣
S=S∗(U,V,W)

= 0 (5)

and the chain rule yields

∂gA(U,V,W)

∂U
=

∂fA(S,U,V,W)

∂U

∣∣∣∣
S=S∗(U,V,W)

(6)

and likewise for the two other partial derivatives of gA. The partial derivatives
of fA can be computed in a convenient way using matricization [14].

1The minimizer is unique if and only if the matrix [Uj ⊗ Vj ⊗ Wj]
1,R
i,j=1 has full column

rank which is the case almost everywhere (with respect to the Lebesgue measure) since m ≥ n.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

517

4 Riemannian gradient algorithm

We briefly introduce the Riemannian gradient algorithm; our reference is [15].
Line-search methods to minimize a real-valued function F defined on a Rieman-
nian manifold M are based on the update formula

xk+1 = Rxk
(tkηk), (7)

where ηk is selected in the tangent space to M at xk, denoted Txk
M, Rxk

is a
retraction on M at xk, and tk ∈ R. The algorithm is defined by the choice of
three ingredients: the retraction Rxk

, the search direction ηk and the step size
tk.

In our problem, we shall use the qf retraction [15, equation (4.8)]:

RX(Y) := qf(X+Y) (8)

where qf(A) is the Q factor of the decomposition of A ∈ R
p×q with rank(A) = q

as A = QR where Q ∈ St(q, p) and R is an upper triangular q × q matrix
with positive diagonal elements. The manifold in our problem is a Cartesian
product of Stiefel manifolds; this is not an issue since the retraction can be
performed componentwise. Next, the gradient method consists of choosing
ηk := − gradF (xk) where gradF is the Riemannian gradient of F . In the
case where M is an embedded submanifold of a linear space E and F is the re-
striction on M of some function F̄ : E → R, gradF (x) is simply the projection
of the usual gradient of F̄ at x on TxM. For instance, St(q, p) is an embedded
submanifold of Rp×q and the projection of Y ∈ R

p×q on TXSt(q, p) is given by
[15, equation (3.35)]

(Ip −XXT)Y +X skew(XTY) (9)

where skew(A) := 1
2 (A−AT) is the skew-symmetric part of A. At this point, it

remains to specify the step size tk. For that purpose, we will use the backtracking
strategy presented in [15, section 4.2]. Assume we are at the kth iteration.
We want to find tk > 0 such that F (Rxk

(−tk gradF (xk))) is sufficiently small
compared to F (xk). This can be achieved by the Armijo rule: given ᾱ > 0,
β, σ ∈ (0, 1) and τ0 := ᾱ, we iterate τi := βτi−1 until

F (Rxk
(−τi gradF (xk))) ≤ F (xk)− στi ‖gradF (xk)‖2 (10)

and then set tk := τi. In practice, we set ᾱ := 0.2, σ := 10−3, β := 0.2 and we
perform at most 10 iterations in the backtracking loop.

The procedure described in the previous paragraph corresponds to [15, Al-
gorithm 1] with c := 1 and equality in [15, equation (4.12)]. In our problem, the
domain of the cost function is compact since it is a Cartesian product of Stiefel
manifolds. Therefore, [15, Corollary 4.3.2] applies and ensures that

lim
k→∞

‖gradF (xk)‖ = 0. (11)

In view of this result, it seems natural to stop the algorithm as soon as the norm
of the gradient becomes smaller than a given quantity ε > 0.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

518

5 Numerical results

We evaluated the ability of the gradient algorithm to recover a known BTD.
This test has two advantages: on one hand, we try to recover a structure that is
really present, and on the other hand, we know the exact solution of the problem,
which is a big advantage to evaluate the methods. Let us describe the test in
detail. We set R := 2, we select

• positive integers Ii and Ri such that Ri ≤ Ii for each i ∈ {1, 2, 3},
• Sr ∈ R

R1×R2×R3 for each r ∈ {1, . . . , R} according to the standard normal
distribution, i.e., Sr := randn(R1,R2,R3) in Matlab,

• Ur ∈ St(R1, I1), Vr ∈ St(R2, I2) andWr ∈ St(R3, I3) for all r ∈ {1, . . . , R}
according to the standard normal distribution, i.e.,
Ur := qf(randn(I1,R1)) in Matlab,

and we define

A :=

R∑
r=1

Sr ·1 Ur ·2 Vr ·3 Wr. (12)

Then, we compare the gradient algorithm with variable projection (i.e., on the
cost function gA) and without variable projection (i.e., on the cost function fA)
using the same 100 randomly selected starting iterates. The results are presented
in Table 1.2 A success means that the norm of the gradient and the cost function
have been respectively brought below 5 · 10−14 and 10−25.

with VP without VP
successes 100 100
min(iter) 266 371
mean(iter) 330 651
max(iter) 481 2804
mean(backtracking iter) 2.05 2.24
min(time) 0.41 0.55
mean(time) 0.52 1.03
max(time) 0.84 8.85
mean(time spent in VP) 0.11 /
mean(time/iter) 0.0016 0.0015

Table 1: Running times (in seconds) of the gradient algorithm with and without
variable projection with (I1, I2, I3) := (5, 5, 5) and (R1, R2, R3) := (2, 2, 2).

At first sight, it may seem surprising that the mean running times of an
iteration with and without variable projection are comparable (0.0016 vs 0.0015)
since a least squares problem is solved at each iteration of the backtracking loop

2The Matlab code that produced the results is available at
https://sites.uclouvain.be/absil/2017.11.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

519

https://sites.uclouvain.be/absil/2017.11

in the former case. In fact, it is consistent with the fact that fewer iterations
are performed in the backtracking loop with variable projection (2.05 vs 2.24 on
average). We also observe that the gradient algorithm with variable projection
needs fewer iterations to converge, about half on average (330 vs 651). As a
result, it is about twice faster on average.

References

[1] A. Cichocki, D. Mandic, A.H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lathauwer.
Tensor decompositions for signal processing applications: From two-way to multiway
component analysis. IEEE Signal Processing Magazine, 32(2):145–163, March 2015.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Falout-
sos. Tensor decomposition for signal processing and machine learning. IEEE Transactions
on Signal Processing, 65(13):3551–3582, July 2017.

[3] L. De Lathauwer. Decompositions of a higher-order tensor in block terms—Part I: Lemmas
for partitioned matrices. SIAM J. Matrix Anal. Appl., 30(3):1022–1032, 2008.

[4] L. De Lathauwer. Decompositions of a higher-order tensor in block terms—Part II: Def-
initions and uniqueness. SIAM J. Matrix Anal. Appl., 30(3):1033–1066, 2008.

[5] L. De Lathauwer and D. Nion. Decompositions of a higher-order tensor in block terms—
Part III: Alternating least squares algorithms. SIAM J. Matrix Anal. Appl., 30(3):1067–
1083, 2008.

[6] L. De Lathauwer. Block component analysis, a new concept for blind source separation.
In F. Theis, A. Cichocki, A. Yeredor, and M. Zibulevsky, editors, Latent Variable Analysis
and Signal Separation: 10th International Conference, LVA/ICA 2012, Tel Aviv, Israel,
March 12-15, 2012. Proceedings, pages 1–8. Springer Berlin Heidelberg, 2012.

[7] L. De Lathauwer. Blind separation of exponential polynomials and the decomposition of
a tensor in rank-(Lr , Lr, 1) terms. SIAM Journal on Matrix Analysis and Applications,
32(4):1451–1474, December 2011.

[8] O. Debals, M. Van Barel, and L. De Lathauwer. Löwner-based blind signal separa-
tion of rational functions with applications. IEEE Transactions on Signal Processing,
64(8):1909–1918, April 2016.

[9] B. Hunyadi, D. Camps, L. Sorber, W. Van Paesschen, M. De Vos, S. Van Huffel, and
L. De Lathauwer. Block term decomposition for modelling epileptic seizures. EURASIP
Journal on Advances in Signal Processing, 2014(1):139, September 2014.

[10] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab 3.0,
Mar. 2016. Available online. URL: https://www.tensorlab.net.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl.,
21(4):1324–1342, 2000.

[12] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer. Best low multilinear rank
approximation of higher-order tensors, based on the Riemannian trust-region scheme.
SIAM J. Matrix Anal. Appl., 32(1):115–135, 2011.

[13] Berkant Savas and Lek-Heng Lim. Quasi-newton methods on grassmannians and mul-
tilinear approximations of tensors. SIAM J. on Scientific Computing, 32(6):3352–3393,
2010.

[14] G. Olikier. Tensor approximation by block term decomposition. Master’s thesis, Ecole
Polytechnique de Louvain, Université catholique de Louvain, 2017. Supervisors: P.-A.
Absil and L. De Lathauwer.

[15] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, NJ, USA, 2008.

ESANN 2018 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2018, i6doc.com publ., ISBN 978-287587047-6.
Available from http://www.i6doc.com/en/.

520

https://www.tensorlab.net

	Introduction
	Preliminaries and notation
	Variable projection
	Riemannian gradient algorithm
	Numerical results

