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Abstract. We present several interpolation schemes on the manifold
of fixed-rank positive-semidefinite (PSD) matrices. We explain how these
techniques can be used for model order reduction of parameterized linear
dynamical systems, and obtain preliminary results on an application.

1 Introduction

Model order reduction (MOR) is a well known tool to simulate large-scale sys-
tems [1]. Its purpose is to compute a model of smaller order (by design, faster to
simulate) that represents accurately enough the behavior of the full-order sys-
tem. The reduced-order model is usually obtained via projection-based methods
such as balanced truncation (further described in Section 2), proper orthogonal
decomposition, Krylov subspace-based moments matching orH2-norm optimiza-
tion [1]. Those methods provide two matrices VProj and WProj that project the
large-scale system into a smaller state space.

In many cases, the system depends on parameters representing, e.g., physi-
cal, material or environmental properties [2]. Parametric model order reduction
(PMOR) computes a parameterized reduced model that approximates the be-
havior of the full-order system in a given parameter range.

A classical technique of PMOR is made of two steps. The reduced-order
models are obtained for a subset of parameter values using MOR (offline step).
They are used to recover the reduced models for other parameter values (online
step), by interpolation. The interpolation is done on representatives of the mod-
els, e.g., the projection matrices VProj and WProj, the reduced-system matrices,
or the reduced transfer functions. We refer the reader to [3] for more information
about PMOR.

In this paper, we consider balanced truncation as the offline step of the
PMOR. The most computationally expensive part of this algorithm is the com-
putation of a low-rank approximation of the positive-semidefinite (PSD) solu-
tions P and Q to a pair of Lyapunov equations. We propose to compute those
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low-rank approximations for a few values of the parameters (offline). Then, for
other values of the parameters, the precomputed solutions are interpolated (on-
line) on the manifold S+(p, n) of n× n positive-semidefinite matrices of rank p.

We consider different interpolation schemes on S+(p, n). Interpolation on
manifolds has been a hot topic for a few years (see [4, 5] and references therein)
and has been recently applied to S+(p, n) in [6, 7]. We compare several interpo-
lation algorithms regarding their ability to recover the solutions to the Lyapunov
equations associated with (intermediary) parameter values. We observe numer-
ically that the interpolation method by blended cubic splines recently proposed
in [5] seems to be the best choice, among the five methods considered. They also
indicate that the computation time required by the interpolation algorithms is
several orders of magnitude lower than the time needed to run the ADI solver
developed in [8].

The paper is organized as follows. In Section 2, we explain in more detail
how interpolation on S+(p, n) can be used for PMOR. The geometric structure
of S+(p, n) and the different interpolation methods are presented in Section 3.
Numerical results are shown in Section 4.

2 Parametric model order reduction

We briefly recall the theory on PMOR and on the balanced truncation method
(see [1] for more information). We consider an asymptotically stable linear pa-
rameterized system:

E(µ)ẋ(t, µ) = A(µ)x(t, µ) +B(µ)u(t),
y(t, µ) = C(µ)x(t, µ),

(1)

with µ ∈ [α, β], a parameter representing, e.g., physical, material or environ-
mental properties, E(µ) ∈ Rn×n nonsingular, A(µ) ∈ Rn×n, B(µ) ∈ Rn×m,
C(µ) ∈ Rs×n, and s,m � n. The vectors x(t, µ), u(t) and y(t, µ) are respec-
tively the state, input and output vectors of the system. The goal of PMOR is
to approximate system (1) with a parametric reduced-order model

Ẽ(µ) ˙̃x(t, µ) = Ã(µ)x̃(t, µ) + B̃(µ)u(t),

ỹ(t, µ) = C̃(µ)x̃(t, µ),
(2)

where Ẽ(µ), Ã(µ) ∈ Rr×r, B̃(µ) ∈ Rr×m, C̃(µ) ∈ Rs×r and r � n (we will now
omit the µ-dependency for readability).

Balanced truncation is a three-step method to compute the reduced-order
model. First, one has to find the low-rank approximate solutions P = XX> and
Q = Y Y > of the Lyapunov equations

EPA>+APE>= −BB>, E>QA+A>QE = −C>C, (3)

where X ∈ Rn×kX , Y ∈ Rn×kY , in which kX and kY depend on µ as well. In
this paper, we resort to the low-rank ADI solver [8]. Secondly, one computes
the singular value decomposition Y >EX = UΣV >. This SVD is truncated to a
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given rank r such that Σ̃ = diag(σ1, . . . , σr) is composed of the r first largest
singular values {σi}ri=1, and Ũ and Ṽ are respectively the truncation of U and
V to their r first columns. The projection matrices of the reduced-order model
are then given by

WProj = Y Ũ Σ̃−1/2, VProj = XṼ Σ̃−1/2. (4)

Finally, the reduced model (2) is obtained by projection: Ẽ = W>ProjEVProj,

Ã = W>ProjAVProj, B̃ = W>ProjB, and C̃ = CVProj.
Note that the truncation rank r is related to the error between the transfer

function H̃ of the reduced model (2) and H, the one of the full-order model (1),
such that it can be chosen relatively to a given tolerance ε as

‖H − H̃‖H∞ ≤ 2
(
σr+1 + · · ·+ σmin(kX ,kY )

)
< ε.

For a transfer function G, ‖G‖H∞ is the supremum, over the frequencies, of
the magnitude of G. Instead of computing the solutions P and Q of (3) for
each value of µ, we propose to precompute solutions Pi and Qi, associated to
some parameter values µi, i = 1, . . . , N , and to recover P (respectively Q) by
interpolation of the Pi (respectively the Qi). The precomputed solutions Pi and
Qi are PSD, with rank kXi and kYi , respectively. On data with such properties,
interpolation methods on manifolds were shown to be valuable [6, 7]. However,
the set of all PSD matrices is not a manifold. Therefore, we truncate the rank of
the matrices to a given rank p, such that they belong to S+(p, n). For instance,
to interpolate the Pi, we choose p = min({kXi

}Ni=1). This step induces a loss of
information, which turns out to be mild in the numerical experiments presented
in this paper. We define P̃i := X̃iX̃

>
i , where X̃i is made of the p first columns

of Xi. By the design of the low-rank ADI method, these columns contain the
dominant information of the low-rank solution. The same reasoning can be used
for the interpolation of the Qi, choosing then p := min({kYi

}Ni=1). The next
section presents some interpolation algorithms on S+(p, n).

Once the interpolant P̃ and Q̃, associated to µ, are known, the construction
of the reduced system (2) is considerably cheaper than the resolution of the
Lyapunov equations.

3 Interpolation on S+(p, n)

Roughly speaking, a Riemannian manifold M is a nonlinear space that can
be approximated around any point x ∈ M by a Euclidean tangent space TxM.
Two main tools are usually required to perform efficient computations onM: the
logarithm map logxy to map a given point y ∈M to the tangent space TxM, and
the exponential map expx η (the reverse operation) to map a tangent vector η ∈
TxM towards M. The curve γ(·;x, y) : [0, 1]→M of zero acceleration between
x and y is called geodesic and can be computed as γ(t;x, y) = expx (tlogxy).
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3.1 The manifold S+(p, n)

The set S+(p, n) is a non-Euclidean space that can be endowed in several ways
with a Riemannian manifold structure [9, §7]. We refer here to the approach
developed in [10], in which S+(p, n) is seen as a quotient manifold Rn×p

∗ /Op,
with Rn×p

∗ the set of full-rank n × p matrices, and Op the orthogonal group in
dimension p. In this representation, any PSD matrix S is factorized as S = Y Y >,
with Y ∈ Rn×p

∗ . The quotient structure comes from the fact that Ŷ Ŷ >= Y Y >

if and only if Ŷ = Y Q with Q ∈ Op. This representation allows to perform
computations directly on the Y -factors, instead of on the full PSD matrices.
This is particularly suitable to our case, as to define VProj and WProj, we only

require the factors X̃, Ỹ of the PSD matrices P̃ := X̃X̃> and Q̃ := Ỹ Ỹ >.
We endow the space Rn×p

∗ with the Euclidean metric. In the Y -representation,
the computation of the exponential map translates simply into a sum, while the
logarithm map requires only to compute a sum and the polar decomposition
of a p × p matrix. However, caution should be taken, as exp and log are not
everywhere defined, and moreover log ◦ exp is the identity on a further restricted
domain (denoted by MY in [10]). We make the standing assumptions that exp
and log need only be evaluated at points where these issues do not arise. We
finally define the projection operator Π : S+(k, n)→ S+(p, n), that returns, for a
PSD matrix of rank k ≥ p, the (generally unique) closest PSD matrix of rank p.

3.2 Interpolation methods on manifolds

We now briefly present several interpolation methods on S+(p, n). The curves
proposed interpolate a set of N points P1, . . . , PN associated with parameters
µ1 < · · · < µN .

Interpolation in the ambient space. A first approach consists in running Eu-
clidean interpolation algorithms in the ambient space Rn×n (i.e., disregarding
the fact that the data lie on a manifold). The result is then projected back on
S+(p, n), using the projection operator Π. We consider here the curve Plin

AS(µ),
corresponding to piecewise linear interpolation in the Ambient Space Rn×n.

Interpolation on one tangent space. A second approach consists in a three-step
procedure: (i) all the data points are mapped to the tangent space based at an
arbitrary point Pref , using the logPref

map; (ii) Euclidean interpolation is per-
formed on those points; (iii) the result is finally mapped back on the manifold
using the expPref

map. The curve Pcub
TS (µ) is obtained with this strategy, inter-

polation in the Tangent Space being done with cubic splines. We consider two
possible choices for the tangent space: Pref = P1 or Pref = Pb(N+1)/2c.

Blended cubic splines and piecewise geodesic splines. More advanced algorithms
on manifolds do not perform all the computations on one single tangent space
(which can generate significant deviations when some points are far from the
root of the tangent space). The piecewise geodesic spline PPG(µ) consists in a
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concatenation of geodesics between two consecutive data points. The blended
cubic spline PBlend(µ) is constructed as a C1 composite curve

PBlend : [0, 1]→M : fi(µ− µi), i = 0, . . . , N − 1,

made of so-called blended functions fi. These blended functions are obtained
by blending together interpolating curves from different tangent spaces. In this
case, fi is the weighted mean of two curves Pcub

TS (µ) computed respectively on
the tangent spaces based at di and di+1. The weights are chosen such that
PBlend(µ) is a C1 interpolating curve. Blended cubic splines were proposed
in [5] as alternatives to Bézier curves on manifolds when conditions on the data
points were not satisfied to ensure a correct interpolation.

4 Numerical results

In our experiments, the full-order model (1) is the 1-parameter anomometer [2]
with n = 29008, and µ ∈ [0, 1] is the fluid velocity. We run the low-rank
ADI method [8] to solve the Lyapunov equation (3) defining P (with tolerance
ε = 10−8), and obtain a training set {PADI

1 , . . . , PADI
21 }, with {µ1, . . . , µ21} =

{0, 0.05, . . . , 1}. The rank of the solutions returned by the solver varies from 25
to 39, so that p = 25. We compare the ability of the interpolation methods to
recover PADI at test values of µ.

Figure 1 (left) shows the relative error Erel(µ) between the predicted matrices
P (µ) and the ADI solutions PADI(µ), truncated to a rank p = 25:

Erel(µ) =
||P (µ)− PADI(µ)||F
||PADI(µ))||F

.

The test set is made of 40 points, and has no intersection with the training set,
for which Erel is zero. The best trade-off between computation time and accu-
racy seems to be the cubic interpolation in the tangent space Pcub

TS (µ), choosing
Pref as the midpoint of the data set (TS3-M). However, this method is sensitive
to the choice of the tangent space, as setting Pref = P1 leads to significantly
larger errors (TS3-1). The blended curve, which intrinsically combines several
tangent spaces, does not present this drawback, and reaches the same accuracy
as TS3-M. The fact that Pcub

TS (µ) and PBlend(µ) are similar when the tangent
space is based at the midpoint of the data set indicates that the curvature of
the manifold is small around the data points considered. For the same reason,
the piecewise linear interpolation in the ambient space Plin

AS(µ) (LinP) is almost
as accurate as the piecewise geodesic spline PPG(µ) (PG). Figure 1 (right) com-
pares the computation times required to obtain the value of the different curves
at one arbitrary value of µ (all the computations that were independent of µ
were done offline and not considered in those timings). The curve PBlend(µ) is
the most expensive one. However, those values have to be compared with the
average time to compute the matrix PADI(µ) using the ADI solver (i.e., without
interpolation), which is here around 10s. Extension to more parameters and
comparison of our PMOR procedure (based on interpolation on S+(p, n)) with
state-of-the-art PMOR methods, are left for future work.
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Figure 1: Comparison of the five interpolation methods considered.
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