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Abstract. The ability to anticipate the future is essential for ac-
tion planning in autonomous systems. To this end, learning video pre-
diction methods have been developed, but current systems often pro-
duce blurred predictions. We address this issue by introducing an object-
centered movement estimation, frame prediction, and correction frame-
work using frequency-domain approaches. We transform single objects
based on estimated translation and rotation speeds which we correct us-
ing a learned encoding of the past. This results in clear predictions with
few parameters. Experimental evaluation shows that our approach is ac-
curate and efficient.

1 Introduction

In this paper, we investigate the problem of video frame prediction. Previous
approaches have used recurrent neural networks [1] to directly synthesize the
predicted image [2, 3]. These were trained using a mean squared error loss
function in tandem with learned image synthesis. This approach introduces blur
into the prediction as the network hedges its bets to minimize the error and
smears predictions, to cover as many eventualities as possible.

To address this issue, we focus on single objects that we assume have been
fully pre-segmented. We model their movement separately, decoupling transfor-
mation learning from image synthesis. Our main contributions are:

• Given a moving pre-segmented object we estimate its centroid, as well as
translational and rotational velocity based on phase correlation.

• We model the estimated velocities and their changes, e.g. at image bound-
aries, using neural networks and

• demonstrate that the frequency-based three pass image transformation
method is able to produce sharp predictions for multiple time steps by
transforming the input according to the estimated parameters.

Source code for the parameter estimation framework, the correction network as
well as the phase-shift based image transformation is available online. 1.

1at https://github.com/v0lta/Fourier-Motion-Estimation-and-Segment-Transformation
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2 Related Work

Early works on future frame prediction [1] rely on general-purpose recurrent
architectures such as gated recurrent units (GRU) to encode an input video
sequence and use a decoder with an identical structure to predict future frames.
The moving MNIST test-problem consisting of handwritten digits moving in a
box was introduced in [1]. Later convolutional structures and flow models were
integrated into recurrent cells [2, 3]. All of the aforementioned methods employ
a mean squared error loss function and use learned weights to synthesize the
prediction. Generative adversarial network (GAN) based formulations include
[4], but these are computationally expensive and hard to train. As a step towards
a more efficient approach, we leverage image registration methods to estimate
motion and rotation parameters [5, 6, 7]. Work similar to ours couples CNNs and
the log polar transform [8] or estimates image translation by phase correlation [9].
Compared to [9], we additionally estimate and predict image rotation using a
log-polar transformation.

3 Methods for Motion Estimation

Due to its robustness, we estimate displacement and rotation of images by com-
puting the normalized cross-correlation in the frequency domain [5]. Based
on the two-dimensional discrete Fourier transformations of the current image
F1 = F(I1) and that of its predecessor F2 = F(I2), we compute

C = F−1
( F1 � F2

‖F1 � F2‖

)
, (1)

using the Hadamard product �. Afterwards, we find the displacement 4x̂ and
4ŷ by locating the correlation peaks in C. We employ the same strategy on
log-polar transformed images to estimate the rotation velocity 4θ̂ [7]. We fur-
ther apply high-pass filtering of the log-polar transformation [5] to increase the
accuracy. As we assume to be working with a pre-segmented object, we com-
pute the centroid cx, cy by multiplying a normalized image In = I/

∑
I with the

coordinate grids X,Y:

cx =
∑

In �X and cy =
∑

In � Y. (2)

4 Neural Network Parameter Correction

We choose a machine learning approach to correct the motion estimates, with
a residual formulation modelling velocity. This leads to a predictor-corrector
setting, where the learned model produces a correction based on current and
previous estimates. More formally, we evaluate

(4x,4y,4θ)T = (4x̂,4ŷ,4θ̂)T + net(ĉx, ĉy,4x̂,4ŷ,4θ̂, s)T , (3)
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Fig. 1: Overview of our estimation, correction and transformation framework.
The estimator (est) finds transformation parameters between the last and cur-
rent frame based on phase correlation and computes the object centroid. The
parameters are corrected by the network (net) based on its encoding of the his-
tory s, by computing a residual which is added to the current estimate. Finally,
the transformer (trans) transforms the last image using the phase-shift property
of the Fourier transform to create the prediction.

where the network computes the correction applied to the parameter estimation
based on the object centroid, velocity estimations and its own internal state s.
Hats indicate estimates. The sum of network corrections and estimates are the
transformation parameters which we use to transform the current image into
the prediction. The object’s centroid serves as prior knowledge to guide the
motion estimation. Figure 1 illustrates our proposed approach. We pick a GRU
structure in Equation 3 and update s accordingly.

5 Fourier Domain Image Transformation

We employ the three pass frequency domain method [10][11] to transform the
current image based on the estimated parameters. It relies on the Fourier shift
theorem for both translation and rotation. Given the desired translation 4x,
we compute one-dimensional Fourier transforms and shift the phase using

It = F−1(F(I) exp (−i2π4xf)) (4)

to translate the image in x-direction. f denotes the frequencies and i the imag-
inary unit. For a translation of 4y in y, we apply the same formulation but use
the transposed image It instead of I. For a rotation by angle θ ∈ [−0.25π, 0.25π],
we compute the shear parameters a = tan(θ/2) and b = − sin(θ) [11]. We modify
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Fig. 2: Moving MNIST translation prediction. Ground truth (top), our estima-
tion correction cell prediction (middle) and a standard GRU of size 512 (bottom)
are shown. Predictions are made using 4 context frames. We observe that our
approach produces predictions which remain sharp, while the much larger GRU
cell’s predictions are blurry.

the phase in order to obtain a shear effect in x-direction using,

Isa = F−1(F(I) exp (−i2πafy)), (5)

with the same notation as in Equation 4 with y being the y-coordinate. In the
second pass we shear in y-direction by transposing I and using b instead of a,

Isb = F−1(F(IT ) exp (−i2πbfy))T , (6)

where we replace the shear parameters a and b. The transpose shifts x and y
coordinates, therefore y appears. Finally, the third pass is a repetition of the
first so that we obtain a full rotation.

6 Video Frame Prediction

We evaluate our approach using the popular moving MNIST data set [1] and its
rotating cousin [3]. We normalize inputs to be within [0, 1] and choose a GRU
for the correction-net in Equation 3. The state size is set to 50, the learning rate
to 0.0005 and the batch size to 550. We stop training after 5000 iterations. In
addition, we use the same parameters to train an off-the-shelf gated recurrent
unit with a state size of 512 as a baseline.

6.1 Translation

In the classic MNIST translation setting [1], digits move with a random velocity
on a 64 by 64 pixel canvas and bounce off the walls. An important limitation
of the velocity estimation described in Equation 1 is it’s restriction to pixel-
level accuracy. When used in recurrent operation, this restriction can lead to
instabilities: Systematically underestimating movement may cause it to halt
eventually. Systematic overestimation can lead to acceleration over time. The
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Fig. 3: Rotating moving MNIST prediction, ground truth (top), our estimation
correction transformation cell output (middle) and standard GRU (bottom).

Table 1: Evaluation using 550 prediction and ground truth sequences. The
mean and standard deviation of our predictions are very close to the ground
truth. Our approach performs slightly worse in terms of mean squared error
with significantly fewer parameters and remains sharp.

mean std gt-mse #weights
Ground truth 0.025 0.137 - -

Ours 0.026 0.135 0.015 32k
GRU 0.036 0.103 0.009 9182k

high level GRU corrects these errors and handles wall bounces. The state size of
this cell can be comparatively small, because it integrates velocity and centroid
information over time instead of entire images. We compare our approach to a
conventional cell without estimation and image transformation capabilities. This
recurrent cell directly synthesizes its prediction of the upcoming frame based on
its internal state. While this low-level approach is more flexible, it suffers from
blurred prediction as well as miss-classification. Results are shown in Figure 2.
We observe that our results are very hard to distinguish from the ground truth.
Even though the vanilla GRU state is ten times as large and its architecture is
more flexible, the result is blurry and can suffer from miss-classification. Our
higher-level approach prevents both.

6.2 Rotation and Translation

In Equations 5 and 6, we introduced our Fourier shift approach to rotation. We
have already shown in Figure 2 that gradients can be back-propagated through
our frequency-domain image translation operation. Figure 3 demonstrates that
this also works for our multi-step rotation by shearing procedure. We can stack
multiple phase modification transforms within recurrent cells. The Fourier trans-
form is a unitary operation and our phase modification matrices do not modify
the magnitude and therefore do not change the scaling. This enables us to
run a stable process with multiple transformations per time step in a recurrent
manner. In Table 1, we compare mean standard deviation and mean squared
error of the ground truth as well as our and the GRU-baseline predictions. We
observe that our approach does not significantly alter the mean and standard
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deviation. Using the standard GRU leads to slightly better performance in terms
of mean squared error, but its predictions are not naturally distributed, which
significantly lifts the mean and reduces the standard deviation.

7 Conclusion

In this paper, we studied a new approach to avoid the smearing effect which
arises when learned image synthesis and mean squared error functions are com-
bined. By modelling object movement at a higher level, we prevent our system
from spreading out its predictions. Our approach could be an effective potential
replacement for expensive GAN-based approaches for transformation scenarios,
which are used to achieve the same goal. Object segmentation methods could
be combined with our approach in the future.
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