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Abstract. Recently, character-level embeddings have become popular in the Nat-
ural Language Processing community. These representations provide a description
of a word which depends solely on its inner structure, i.e. the sequence of charac-
ters. Convolutional and recurrent neural networks are the undisputed protagonists
in this context, and they represent the state of the art for many character-level ap-
plications. In this work, we firstly compare different neural architectures against
adaptive string kernels in simplified scenarios. Then, we propose a hybrid ensem-
ble that injects structural kernel-based features into a neural architecture, providing
an efficient and scalable solution. An all-around experimental assessment has been
carried out on several string datasets, including biomedical entity recognition and
sentiment analysis.

1 Introduction

One of the emerging challenges in the Natural Language Processing (NLP) community
is the development of models able to learn a suitable representation (or embedding)
of words, sentences, and documents. Several representations have been proposed in
the last decade for this purpose, as is the case of popular word-embeddings [1], where
words with the same meaning have a similar representation. Word-embeddings have
revolutionised most of the existing NLP applications, and they are often placed inside
a plethora of sentence-level downstream tasks, such as Entity recognition [2] or Part-
of-Speech tagging [3]. However, word-embeddings have several drawbacks. Firstly,
they cannot represent out-of-vocabulary words. Secondly, ordinary word-based repre-
sentations do not take into account the internal structure of a word, i.e. the sequence
of characters that compose it. This inner structure could provide useful information in
several tasks and domains. For instance, in the biomedical field, proteins and chemical
compounds have a particular structure that is a fundamental source of information [4].
To this end, character-level representations, such as the embeddings learned by fastText
[5]], have been recently explored. These methods learn a representation of a word which
strictly depends on the sequence of characters.

Headed by Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNSs), neural architectures have been widely used to learn character-level embed-
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dings, with applications in question answering [6], biomedical Named Entity Recogni-
tion [7], and machine translation [8]. Kernel methods represent a possible alternative,
and they have been already used for similar purposes [9]. Each method has its own pe-
culiarities and drawbacks. For instance, Neural Networks (NNs) require a huge amount
of training data and specialized hardware, whereas kernel methods do not scale well
with large datasets.

Having said that, this paper exposes a two-fold contribution. Firstly, we analyze
the quality of character-level embeddings developed by different approaches, i.e. RNN,
CNN, and adaptive string kernels, showing remarkable results. Secondly, we propose a
hybrid architecture, here named Extreme Spectrum Machine (ESM), which merges ex-
plicit string kernels with random weights (i.e. untrained) NNs. We evaluate our meth-
ods on several Biomedical Named Entity Recognition (BNER) and Sentiment Analysis
(SA) datasets.

2 Background

While CNN and RNN are nowadays mighty popular and they do not need an exhaustive
introduction, kernel methods are briefly described here, focusing on spectrum kernels
and kernels combinations.

Kernel methods rely on a modular architecture which comprises two elements, a
general purpose optimization engine, and the kernel [10]]. The kernel is a semidefinite
positive function k : X x X — R that defines the similarity between pairs of inputs
through their dot-products in an implicit feature space K, i.e. k(x, z) = (¢(x), ¢(2)).
The embedding function ¢ : X — K maps data from the input space X’ to the kernel
space K. The kernel allows us to solve tasks with different data-types and structures,
such as graphs, trees, and sequences or strings.

2.1 Spectrum kernels

Let X be the set of possible symbols and ¥* = Up 3P be the set of strings of arbitrary
length. Several string kernels exist in the literature, such as the popular spectrum [10]
kernel, whose feature space (or embedding) ¢P : ¥* — Z‘Ep‘ counts any possible
contiguous sub-sequence of length p. The u-th feature computed on an input string
x is defined as ¢f (x) = |{(vi,v2) : ® = viuve}|, u € XP, where viuvy denotes
the concatenation of strings vy, u, and vo. The p-spectrum kernel is defined as the
dot-product between p-spectrum embeddings, that is kP (x, z) = (¢P(x), 9P (2)).

In this work, the Multiple Kernel Learning (MKL) [11] framework has been used
to learn linear non-negative combinations of spectrum kernels, with form: k,,(x, z) =
Yo trke(x,2), ||plli = 1A p. > 0, where k, are the base kernels, and p is the
weights vector which parametrizes the combination. The EasyMKL [11] algorithm has
been used to learn the optimal combination of base spectrum kernels.

2.2 A qualitative comparison

Different methods emphasize different aspects of a problem, producing different em-
beddings. Spectrum features represent the number of occurrences of a fixed length
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sub-string. Clearly, this representation is based on local information provided by sub-
structures rather than long term dependencies, and the same sub-string gives the same
information when appearing either as prefix or as suffix. Similarly, CNN also focuses on
local information, where a sliding window crosses the input sequence and processes the
observed sub-string. CNN could be apt in tasks where the presence of sub-structures is
important. For instance, in the task of extracting sentiments and polarities from tweets,
the mere presence of smiles in the text could drive the classification. On the other hand,
recurrent architectures try to catch temporal dependencies between characters and ele-
ments of a sequence rather than the presence of a (processed) sub-structure. Recurrent
architectures are eligible in problems where long/short relations between characters or
sub-structures are important. An intuitive example is the biomedical entity recognition
task, where prefixes and suffixes play crucial but different roles.

3 Extreme Spectrum Machine

Hereby, we introduce the Extreme Spectrum Machine (ESM), a simple but effective
neural architecture which combines NN and spectrum kernels. The network consists of
3 elements. The first is the spectrum embedding that extracts the explicit spectrum of
a word (or short text). We remind that the feature space of the p spectrum kernel has
dimension | 7|, and the number of active features for an input string € ¥* is bounded
by its length ||z||o < ||z||1 = |#| — p + 1. In other words, the spectrum embedding has
a huge dimensionality and it is extremely sparse. A random projection is then applied
to reduce the embedding space, making the explicit spectrum embedding tractable. The
resulting embedding is defined as ¢?(x) = (W, ¢P(x)), where W € R I>"I is the
random projection matrix, and é : ¥* — R is the ESM embedding function. The
dimension d of the projection is an hyper-parameter. After the compression, a learnable
dense layer is placed on the top of the ESM, performing the classification.

The computation of the initial p-spectrum embedding has linear complexity with the
sequence length, whereas the remainder of the network just requires a couple of matrix
multiplications, making the system extremely fast in training and inference. Conse-
quently, the ESM can be easily applied to low-resource scenarios and to tasks with a
lack of available training data (such as specific languages). Moreover, the ESM can be
easily placed inside other sentence-level architectures, such as the popular transform-
ers, without significantly increasing the number of total parameters. However, in this
work we simply introduce the ESM framework, showing its potentiality and effective-
ness in spite of its simplicity. Future directions, such as the learnability of W through
a language model objective, the inclusion of multiple kernels, and the injection of the
framework inside a sentence-level architecture are beyond the scope of this work.

4 Experimental assessment

A large empirical comparison has been carried out to assess different character-level
embeddings in 2 NLP tasks, which are Biomedical Named Entity Recognition (BNER),
and Sentiment Analysis (SA). A total of 5 BNER datasets have been used for the eval-
uation. These datasets (described in [4]]) contain tokens or n-grams extracted from
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biomedical documents through a dictionary look-up approach. The task is a binary clas-
sification problem, which consists of identifying if an input string is or not a biomedical
entityﬂ such as proteins, cellular components, or chemical compounds. Two datasets
for the SA task have been included in the assessment. These datasets, here named
Twitter-S and Sentiment-l4 contain short texts from Twitter. The (binary) label
of each tweet is the polarity of the message. A random sub-sampling has been applied
to these two datasets to alleviate the computational cost of NNs and MKL. The charac-
teristics of these datasets are shown in Table[I} No pre-processing has been applied.

dataset training | test | |X| | seq.length | max length
BioNLP13CG-cc 1824 646 | 52 | 5751970 16
BioNLP13CG-chem 5365 | 1656 | 71 | 5374355 24
BioNLP13CG-species 1847 369 63 5.1849.37 21
BioNLP13PC-cc 1939 | 1016 | 53 7.0044.42 34
BioNLP13PC-chem 7974 4734 | 77 8.1846.72 57
Twitter-SA 3000 | 1000 | 152 | 63.74135 60 167
Sentiment-140 10000 | 1000 | 94 | 74.36136.75 212

Table 1: Dataset description. Statistics have been computed on the training sets.

4.1 Model selection

Training sets have been split into training (80%) and validation (20%) sets. The same
training/validation split has been used in every experiment. The baselines and methods
compared are CNN, RNN, LSTM, SVM, MKL, and the proposed ESM. The hyper-
parameters of CNNs that have been selected in validation are the number of convolution
layers {1, 2}, the number of filters {128...512}, and their dimension {3, 5, 7}. In the
case of RNNs and LSTMs, the hyper-parameters are the recurrent dropout {0, 0.2,0.5},
the number of recurrent layers {1, 2} and their dimensions, with {128 ..512} neurons.
The spectrum degree p € P = {1...6} and the dimension of the random projection
{128...1024} for the ESM have been also selected in validation.

At the top of the networks, a dense layer has been stacked for doing the classifica-
tion. Its dimension has been selected in {64 . . . 512}. The Adam optimizer (1e-4 Ir) has
been used, with cross-entropy loss. The batch size has been set to 32. For each neural
architecture (CNN, RNN, and LSTM, ESM), the best configuration, i.e. the one which
achieves the lowest validation loss, has been applied to the test set. The same procedure
has been repeated S times, reporting average scores and standard deviation.

In the case of SVM, the validation covers the C' € {10° : i = —1...4} value and
the spectrum degree p € P. All spectrum kernels in P have been combined by means
of the EasyMKL algorithm. EasyMKL has a regularization hyper-parameter, A\, with
possible values in {0,0.1...1}, The code and the datasets are freely availableﬂ

I'These datasets describe a simplified version of the original NER task.
Zhttps://www.kaggle.com/c/twitter-sentiment-analysis2
3https://www.kaggle.com/kazanova/sentiment140
4https://github.com/sirCamp/extreme_spectrum_machine
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4.2 Evaluation

Results of the evaluation are show in Table [2] Not surprisingly, simple RNN outper-
forms the LSTM in 4 out of 5 entity recognition tasks. These datasets consist of short
strings, where there is no need to model long-range dependencies. However, results are
overthrown in the case of (much longer) tweets. On the other hand, kernel methods,
i.e. SVM and MKL, expose useful insights to improve our approach. The SVM with
a single string kernel achieves lowest results on average, whereas the MKL is showing
an exceptional performance on several tasks.

dataset CNN RNN LSTM | SVM | MKL | ESM

B.13CG-cc 92348 | 92341 | 92145 | 920 | 93.0 | 93.2. 4
B.13CG-chem 88.0.5 | 86215 | 8556 | 845 | 853 | 86.81%
B.13CG-species | 90.2125 | 89915 | 90.2L 5 | 88.7 90.5 | 90.5.

B.13PC-cc 93.04 16 | 94.004 | 92014 | 922 | 940 | 958, ¢
B.13PC-chem | 89.8.429 | 89.4. - | 88.6.5 | 88.6 | 89.8 | 88.5.
Twitter-SA 71016 | 62823 | 72615 | 766 | 77.6 | 75.150

Sentiment-140 592419 | 57.04o | 58747 | 68.0 | 71.9 | 70.0+ 5

Table 2: Accuracy scores computed on the test sets. Best results are highlighted.
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Fig. 1: The combination weights computed by EasyMKL.

To better explore the MKL results, the combination weights p learned by EasyMKL
on different dataset are exposed in Fig.[I] Note that the highest contribution in biomedi-
cal datasets is provided by sub-sequences of length 2 and 3, that are sufficiently large to
cover affixes, which are a good informative source. Reasonably, the weights distribution
learned from tweets is focusing on larger sub-structures. This result clearly indicates
that the combination of multiple spectrum features provides a considerable improve-
ment in accuracy. Moreover, the combination mechanism plays a key role, and it is not
trivial. This aspect will be taken into account in future extensions of the framework.

Finally, we compared our approach against fastText (FT) [S]] as feature extractor on
a few biomedical datasets. FT is a popular pre-trained model that mixes word-level and
character-level information. However, FT achieves only +0.1 of accuracy on B.13CG-
cc/PC-cc, and +0.2 on CG-species with the cost of an expensive pre-training on large
corpora and 2 orders of magnitude of additional learnable parameters.
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5 Conclusions

This work introduces the Extreme Spectrum Machine (ESM), a simple approach that
engages structural spectrum features inside a neural network to learn character-level
representations. The ESM has been compared against several neural networks and ker-
nel methods, showing notable results on several datasets.

This work opens multiple interesting directions. Firstly, the embeddings produced
by ESM can be easily injected into sentence-based architectures, such as the popular
Transformer. This aspect, with an adequate pre-training can easily improve the effec-
tiveness of ESM. Secondly, more complex kernel functions, such as the fixed-length
sub-sequences, or the gap-weighted sub-sequences kernels, can be taken into account
to improve the expressiveness of the embeddings. Finally, results from MKL suggest
that combining multi-spectrum features is a key point for this approach, and this aspect
will be investigated in depth.
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