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Abstract. Over its lifetime, a Reinforcement Learning agent is often
instructed to perform different tasks. How to efficiently adapt a previously
learned control policy from one task to another, remains an open research
question. In this paper, we investigate how instructions formulated in
natural language can enable faster and more effective task adaptation.
Our proposed method is capable of assessing, given a set of developed
base control policies, which base policy will be the most qualified to adapt
to a new unseen task.

1 Introduction

Reinforcement Learning (RL) solves sequential decision-making problems by uti-
lizing a trial-and-error approach guided by a reward signal. RL has achieved
tremendous successes, especially in beating humans in video games [1] and
robotics [2]. However, RL also suffers from various open problems, such as
its sample inefficiency. This sample inefficiency is often caused by the reward
function-specification. On the one hand, a sparse and delayed reward signal
makes it difficult for the agent to experience any meaningful feedback. On the
other hand, designing tasks with a dense reward signal, is often a complex en-
deavor, and regularly exhibits unwanted side effects [3].

A recent line of research [4], has proposed methods that allow task descrip-
tions to be specified using natural language. A commonly used approach consists
of directly embedding both visual observation and language instruction in order
to train a control policy [5, 6, 7]. Alternatively, [8] uses natural language reward
shaping, by predicting if an action in a trajectory matches a task description.
[9] explores the compositional structure of natural language in order to learn
abstractions capable of generalizing over different sub-tasks using language in-
structions. Unfortunately, these methods have proven to still be very sample
inefficient, requiring weeks of training in simulations, in order to learn relatively
simple tasks.

In this paper, we propose a natural language guided transfer learning method.
Our method can make RL methods informed by natural language more sample
efficient, requiring less interaction with the environment. We achieve this by
providing a viable way of allowing an agent to efficiently adapt previously learned
knowledge, to a new previously unseen task. Current algorithms capable of
quickly adapting their control policies to solve related tasks, mostly rely on
intensive training using a diverse set of tasks [10], often guided by a hand-
crafted curriculum of increasingly more difficult and diverse tasks. Our method
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does not require such extensive training, and is capable of, given a small set of
pre-trained policies, to make decisions about which previously developed policy
will adapt best, in order to solve a new previously unseen task, solely from its
task description formulated using natural language.

2 BabyAI environment

In order to demonstrate our method, we make use of the BabyAI environment
[7]. In this environment, the agent is tasked with completing various tasks in
a multi-room 2D gridworld. For our experiments, we consider a single room,
and test our method on the goto and pickup problems. The task the agent is
charged with, is described using a synthetic baby language. Instructions we use
in our transfer experiments follow the same 〈verb, object color, object〉 pattern
(e.g. pickup the yellow box ).

The pixels of the screen, together with this instruction, form the fully observ-
able state-space S. The action-space A consists of movement, handing objects
and opening doors. The reward-signal is only sparsely observed.

3 Method

The main idea of our approach is to start with a limited set of pre-trained
parameterized base control policies. When confronted with a new task, described
using natural language (the transfer instruction), the best base policy is selected,
and the new task is learned more efficiently, based on the parameters of this base
policy. A summary of our method can be found in Algorithm 1.

Algorithm 1: Summary of our task-adaptation method.

1 α: k instructions sampled from the set of possible instructions Z
2 β: p instructions sampled from the set of possible instructions Z
3 foreach instruction i ∈ α do
4 Train base policy πi until convergence
5 foreach instruction j ∈ β do

6 Sample task-adaptation πj
i during n training steps. A new policy

πj is developed starting with the model parameters from base
policy πi.

7 Train the transfer model

3.1 Pre-training base control policies

In the pre-training phase, we train k base control policies {π0, ..., πk}. A single
base control policy πi(st) determines the action at ∈ A an agent takes, based on
the state st ∈ S the agent resides in. Each base control policy should reliably be
able to perform one instruction i. This task instruction is expressed in natural
language (e.g. go to the blue ball or pickup the yellow key).

Training base control policies can be done using any RL algorithm, capable
of learning and forgetting new tasks. The amount of pre-trained control policies
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should be sufficiently large, but smaller than the entire set of possible instructions
(k � |Z|).

Our method can be used with a fixed number of base control policies, which
are trained during a single pre-training phase. Additionally, our method can
also be extended to work in an iterative fashion. In this iterative approach,
the agent starts with a small set of k pre-trained base control policies. When
confronted with a new task, our method determines the best base control policy
to facilitate task-adaptation (e.g. πi). After training the new policy πj using the
model-parameters from the selected base control policy πi, the resulting policy
πj can be added to the set of base control policies. This will allow executing
more efficient task-adaptations, as more base control policies become available.

We select k instructions {z0, ..., zk} to train base policies {π0, ..., πk}, from a
uniform random distribution. However, an interesting extension to this research
might be to select base control policies based on a more advanced selection
criterion, such as maximizing distance between the task instructions in a prior
language-embedding.

3.2 Sampling task-adaptations

The second phase of our method consists of utilizing the developed base control
policies, in order to sample a limited number of task-adaptations. A single task-
adaptation sample πj

i consists of taking a fully developed base control policy πi,
and using it to perform a new instruction j, different from the one it was trained
on. An example of such a sample would include to start from a policy trained
on an instruction go to the yellow box, and utilize it to perform a different task,
such as pickup the yellow box.

A task-adaptation sample is performed by loading the parameters of the base
policy as the initial parameters of the new policy. Training can be performed
using any RL algorithm. During this sampling phase the policy does not need
to converge. Training only needs to happen for a limited number of n steps.
This amount of required steps is significantly lower than fully developing the
policy. After the sampled task-adaptation has been executed for n steps, we
measure the performance. This can be done by, for example, calculating the
success rate of the agent satisfying the instruction over the last 100 iterations.
For each base control policy, we randomly select p different tasks from Z to
sample task-adaptation.

In summary, in this phase, to develop our dataset, we run k × p task-
adaptation samples (for n training steps). The resulting policies, which are
only partially developed can also potentially be used.

3.3 Training the transfer-model

The final stage of our method consists of training a binary classification model:
f(zx, zi, zj) → {1, 0}. This model is capable of generalizing the perceived task-
adaptation over unseen adaptations, solely from using the task descriptions,
formulated in natural language.
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Instruction zx Transfer instruction zi Transfer instruction zj Class
Goto the green key Pickup the red ball Goto the yellow box 1
Goto the red ball Pickup the red ball Goto the yellow box 0

Table 1: Example input dataset, used to train the transfer-model.

The input of the proposed model (Figure 1) consists of a concatenation of
the sampled transfer instruction zx, combined with the instructions attached to
two candidate base policies (zi and zj). The output of the model consists of a
single binary output. This output is trained to be 1, if the first base policy with
instruction zi will adapt better than the second base policy satisfying instruction
zj . An example dataset is presented in the Table 1.
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Fig. 1: Transfer-model architecture.

In order to work directly with instructions in natural language, a language
embedding is used. This embedding is trained end-to-end, and thus is specifically
trained to encode instructions based on their transfer capabilities.

3.4 Transfer-model usage

The resulting transfer-model can be used when the agent is confronted with a
new task description, it currently has no developed policy for. Given a set of
labeled base policies, and the new task description, the various possibilities can
be tested in order to make an assessment of which base policy will result in the
fastest task-adaptation.

4 Experiments

In order to find out whether patterns can be discovered in task-adaptations using
instructions expressed using natural language, we initially performed a large set
of 636 transfer experiments in the BabyAI environment.

This initial experiment taught us that complex relations between parts of
instructions exist. For example in Figure 2 the importance of the verb in the
task description is presented.

However, the discovered relationships between task instructions and transfer
capabilities were not straightforward, thus in our second experiments we exam-
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Fig. 2: Comparison of how well different base control policies adapt to new
tasks, based on whether the verb in the instruction is the same or different. The
solid lines represents the mean, the shading represents the standard deviation.
Measured over 636 different transfer tasks.

ined if our proposed classification model could successfully generalize over the
sampled task-adaptations. In order to do this, we trained different amounts k of
randomly sampled base control policies. While training can be done using any
RL algorithm, we used DQN [11] in our experiments. Training a base control
policy is done using at least 1M steps, and ends when the policy achieves a
success rate of at least 95%, measured on the previous 100 iterations.

After developing k different base control policies, we sampled p adaptations
for each base control policy (n=100,000). The results gathered from these task-
adaptations were used to train the transfer model (Adam lr= 0.001, 1M steps).

In Table 2, we present the performance of our model, using various numbers
of base control policies (k), and different numbers of task-adaptation samples
(p). We measure model accuracy over a holdout-set consisting of all possible
expressible task-adaptations not seen during sampling. This accuracy measures
the percentage that our model selected the best base policy (2M steps).

p=8 p=10 p=12 p=14 p=18 p=20
k=8 0.61 ±0.03 0.62 ±0.03 0.61 ±0.05 0.64 ±0.05 0.65 ±0.02 0.66 ±0.03
k=10 0.62 ±0.03 0.62 ±0.05 0.64 ±0.06 0.62 ±0.04 0.66 ±0.03 0.67 ±0.02
k=12 0.67 ±0.02 0.67 ±0.01 0.66 ±0.02 0.67 ±0.02 0.68 ±0.02 0.66 ±0.04
k=14 0.64 ±0.04 0.66 ±0.02 0.67 ±0.03 0.69 ±0.01 0.69 ±0.03 0.68 ±0.01
k=18 0.67 ±0.03 0.68 ±0.02 0.68 ±0.03 0.71 ±0.01 0.70 ±0.02 0.71 ±0.02
k=20 0.69 ±0.01 0.68 ±0.05 0.70 ±0.02 0.69 ±0.04 0.71 ±0.03 0.71 ±0.03

Table 2: Accuracy of the task-adaptation classifier model. The different rows
represent the various amount of base control policies used during training (k),
the columns represent the amount of task-adaptations (p) sampled for each base
control policy. Results are averaged over 5 runs.

Our results show that even with a limited number of k base control policies,
and p sampled task-adaptations, a transfer model can be developed. There is
still room for improvement regarding the accuracy of the model, however the
stochastic nature of RL, makes task-transfer inherently noisy.

Nevertheless, efficient task-adaptation realized by our method, proves to be
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a quintessential building block in a lifelong learning setting [12].

5 Discussion

In this paper, we presented a method capable of predicting, given a set of base
control policies, labeled using natural language, which of these base control
policies will adapt the fastest to a new previously unseen task. In order to make
assessments about task-adaptation, our method uses a for this task specifically
trained language embedding as part of an end-to-end binary classification model.

Our preliminary results experimentally demonstrate that this approach is ca-
pable of assessing adaptation performance, solely from task descriptions. When
confronted with an expanding set of tasks in a lifelong-learning setting, our
method has the potential to vastly improve sample efficiency.
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