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1- Université Catholique de Louvain - ICTEAM
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Abstract. In this paper, estimation of AutoRegressive (AR) and Au-
toRegressive Moving Average (ARMA) models is proposed in a Bayesian
framework using a Gaussian Process Regression (GPR) approach. Im-
pulse response properties of the underlying process to be modeled are
exploited during the parameter estimation. As such, models of enhanced
predictability can be consistently obtained, even in the case of large model
orders. It is also proved that the proposed approach is strongly linked
with the Prediction Error (PE) model estimation approaches, if the esti-
mated parameters are regularized. Simulations are provided to illustrate
the efficiency of the proposed approach.

1 Introduction

In the field of time-series analysis, AR and ARMA models have been widely
studied for the description of dynamic stochastic processes, with the majority
of the applications to be related to prediction and forecasting [3]. Estimation
of these models has been proposed based on different approaches (Maximum
Likelihood estimation [7], PE approaches [5], Bayesian methods [8]).

In this work, we show that in a Bayesian framework, it is possible to estimate
the model parameters of AR and ARMA processes when taking into account
prior information related to the behavior of the impulse response of the inverse
model. In this way, unlike in the typical PE method, models of enhanced pre-
dictability can be consistently obtained, even in the case of large model orders.
Moreover, unlike other methods, we use prior information about the estimated
model which originates from system theory. The method proposed is quite gen-
eral for many processes under estimation and has been inspired by the impulse
response estimation method for dynamic systems proposed in [9].

2 Problem statement

Based on data measured from a stochastic process, the objective is to describe its
dynamics and predict the process evolution. It is assumed that the true process
is exactly described by the discrete-time ARMA model structure:

φ(q) yt = θ(q) et ⇒ (1 +

nAR∑
j=1

φjq
−j)yt = (1 +

nMA∑
i=1

θiq
−i)et ⇒ yt = HARMA et

(1)
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where yt ∈ R is the measured output at t, et ∈ R is the innovation at t,
nAR, nMA ∈ N0 are the AR and MA orders, respectively, φj ∈ R, j = 1, . . . , nAR

and θi ∈ R, i = 1, . . . , nMA are the coefficients of the AR (φ(q)) and MA (θ(q))
part, respectively, q is an operator such that q−jyt = yt−j , and HARMA =
1+

∑nMA
i=1 θiq

−i

1+
∑nAR
j=1 φjq−j

. In case nMA = 0, the AR process is recovered. The innovation

process et is assumed to be a realization of an identically and independently
distributed (i.i.d.) Gaussian white noise process with variance σ2

e . Moreover,
both polynomials φ(q) and θ(q) have roots inside or on the unit disc, i.e. both
linear filters H and H−1 are stable. The filters H and H−1 can be written as
infinite series:

H = 1 +
∞∑
t=1

ht q
−t, H−1 = 1 +

∞∑
t=1

hinv
t q−t

where ht and hinv
t , t = 1, . . . ,∞ correspond to the impulse responses of H and

H−1, respectively. For stable linear filters, such as H and H−1, the impulse
response is decaying exponentially to zero. Since estimation of a finite order
AR process is equivalent to the estimation of a finite impulse response, certain
properties are a priori known for the AR coefficients and will be used during
estimation. In the next section, AR process estimation is formulated as a GPR
problem, and this framework is further extended to the ARMA process estima-
tion case.

3 GPR for AR process estimation

Consider (1) with nMA = 0, which corresponds to a univariate AR process. If N
points of the process output yt, t = 1, . . . , N are collected, then the AR process
can be written as follows:

Y = Kβ + E, Y = [ynAR+1 . . . yN ]T , K = [κ(0) κ(1) . . . κ(nAR − 1)]

κ(r) = [−ynAR−r − ynAR+1−r . . . − yN−1−r]
T , β = [φ1 . . . φnAR

]T

E = [enAR+1 . . . eN ]T

where Y ∈ RN−nAR is the output vector, K ∈ R(N−nAR)×nβ is the regressor,
E ∈ RN−nAR is the innovation vector and β ∈ Rnβ contains the parameters of
the model (in this case nβ = nAR). The objective is to estimate β using the
measured output data. We will adopt a Bayesian framework in order to include
prior knowledge in the estimation step. Consider the AR process:

yt = HAR et, HAR =
1

1 +
∑nAR

j=1 φjq
−j , H−1

AR = 1 +

nAR∑
j=1

φjq
−j

The first prior used during estimation is related to the fact that, since HAR and
H−1

AR are stable, the impulse responses of both filters will be decaying exponen-
tially to zero. In case of AR process, the parameters to estimate φj ∈ R, j =

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

686



1, . . . , nAR correspond in fact to the impulse response coefficients of the filter
H−1

AR. The second prior that will used is related to the fact that the impulse
response coefficients of linear systems exhibit often a certain level of correlation
between them. Practically speaking, the coefficients that are closer to each other
in time are more correlated than the ones further away. These two properties
of stability and correlation can be incorporated into the modeling procedure in
order to obtain parameter estimates of increased accuracy, and further models
of enhanced predictability.

3.1 Parameter estimation and prior covariance

Towards this direction, we assume that the parameter vector β in (3) is a
zero mean Gaussian random variable with covariance Σβ ∈ Rnβ×nβ , i.e. β ∼
N (0,Σβ). Assuming that the elements in K are known and given that Y =
Kβ+E, E ∼ N (0, σ2

eIN ), Ix denoting the identity matrix of size x, then β and
Y are jointly Gaussian variables [6]:[

β
Y

]
∼ N

([
0
0

]
,

[
Σβ ΣβK

T

KΣβ KΣβK
T + σ2

eI(N−nAR)

])
The posterior distribution of β conditioned on the process data Y is given by
β
∣∣Y ∼ N (β̂apost,Σapostβ ) where:

β̂apost = (KTK + σ2
eΣ−1

β )−1KTY, Σapostβ = ((σ2
e (KTK)−1)−1 + Σ−1

β )−1 (2)

Different types of structures can be used for the prior covariance matrix Σβ of
the parameter vector β, in order to impose exponential decay (stability) and cor-
relation. Among other choices proposed in the literature [9], a typical structure
towards this direction is the Diagonal Correlated structure (DC) [2] given by:

Σβ(i, j) = e−αρ(|i−j|)e−αλ(i+j)

The hyperparameters αρ > 0, αλ > 0 will be learned from data and will define
the prior knowledge on the process parameters. The value of αρ determines
the level of correlation between the impulse coefficients and the value of αλ
determines the rate of decay of the impulse response to zero. These values, to-
gether with the innovation variance σ2

e , can be learned by means of the following
method, also known as Empirical Bayes: Given the prior covariance Σβ , the pdf
fY of the observed output vector is given by

fY (Σβ) =
1√

(2π)Ndet(ΣY )
e−

1
2Y

T
N Σ−1

Y YN

with Σy = KΣβK
T +σ2

eI(N−nAR). The optimal values of αρ, αλ, σe are the ones
that maximize the marginal likelihood of the observed output, i.e.:

α̂ρ, α̂λ, σ̂e = arg min
αρ,αλ,σe

−2 log(fY ) = arg min
αρ,αλ,σe

Y TN Σ−1
Y YN + logdet(ΣY )
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Optimizing the marginal likelihood of the observed output is a non-convex opti-
mization problem, however it can be efficiently solved as shown already in [1]. It
should be noted that other hyper-parameter tuning methods are also available in
the literature, such as the residual analysis approach (optimal hyper-parameters
render the estimated residuals white and independent [5], [4]) and the cross-
validation technique (splitting the data set into three parts to use for parameter
estimation, hyper-parameter estimation and model validation, respectively [10]).

3.2 The link to the prediction error approach

There exists a link between the GPR method and the classical prediction error
(PE) framework used for time-series estimation. For an AR process described
by yt = HAR et, it can be shown that the best one-step ahead predictor is given
by ŷt/t−1 = (1 − H−1

AR) yt = (
∑nAR

j=1 φjq
−j) yt [5]. Consider the following PE

criterion for parameter estimation:

β̂PE = arg min
β

N∑
t=1

(yt − ŷt/t−1)2 = arg min
β
‖Y −Kβ‖2 = (KTK)−1KTY (3)

The least squares (LS) problem in (3) can often be ill-conditioned when the
ratio N/nβ is not sufficiently large and it does not also provide a unique optimal
solution when N/nβ < 1. However it is possible to overcome these issues by
considering the regularized LS criterion:

β̂reg = arg min
β
‖Y −Kβ‖2 + βTDβ = (KTK +D)−1KTY (4)

It is easy to see that β̂reg = β̂apost in (2), if D = σ2
e Σ−1

β . As such, the GPR
method can be seen as minimizing a regularized PE criterion in order not only
to get a lower prediction error, but also to constrain the parameter vector β
according to the quadratic penalty βTDβ, with the prior knowledge about β
contained in D = σ2

e Σ−1
β .

4 Extension to the ARMA process estimation

First, recall the well-known approach where, based on N measured data yt, a
sufficiently long AR model of the ARMA process (1) is initially estimated. This
model is used to estimate the unknown innovation values and obtain ê1, . . . , êN .
Using these estimates, the ARMA process can be written as:

Y = [KAR KMA] β + E, β =

[
βAR

βMA

]
where Y,E,KAR, βAR are constructed as in the AR case while KMA is an ap-
propriately constructed matrix, similar to KAR, but containing values of êt. In
that case the GPR approach can be applied by considering β ∼ N (0,Σβ) with:

Σβ =

[
ΣβAR

0
0 ΣβMA

]
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As such it is proposed for the ARMA case to use first the GPR method described
in Section 3 for the estimation of a long AR process, obtain the estimates the
unknown innovations as êt = Ĥ−1

AR yt, and then use them to estimate the ARMA
parameters with the GPR method described in the current section. Again, as in
the AR estimation case, it is easy to show that the solution of the GPR method
will lead numerically to the solution of the regularized PE problem.

5 Numerical illustration

The GPR method is first illustrated on the estimation of the 7th order ARMA
process (1) with θ(q) = [0.8374 0.5237 0.2765 0.1312 0.0572 0.0230 0.0085]T and
φ(q) = [0.2355 −0.2291 −0.1199 0.0434 0.0454 −0.0034 −0.0144]T . A sufficiently
long AR model (15 lags) is first estimated using the GPR method described in
Section 3 and the unknown innovation vector e1, e2, . . . , eN is estimated. Then,
the ARMA process is estimated using the GPR method described in Section 4.
This method is compared to the PE method (3), both for the long AR model step
and for the ARMA process. Comparison of the two methods is done through
50 Monte Carlo (MC) simulations where, at each iteration a new realization of
a Gaussian process with variance σ2

e = 1 and length 1000 samples is used to
generate the ARMA output data, and further estimate the model parameters
using these data. Different values of the data length N are considered in order
to observe the evolution of the performance for both methods. To evaluate

2 4 8 10 20 30 50 100

N / n

1

2

3

V
a
l in

d

Fig. 1: Monte Carlo simulation results for the comparison of the GPR with the
PE method. Black: Performance of models using GPR. Grey: Performance of
models using PE.

the performance of the models, a new validation dataset is considered of length
Nval = 1000 samples, of data not used during model estimation. The model
performance is evaluated with the index Valind = 1

Nval

∑Nval

1 (yt − ŷt/t−1)2. The

results for the 7th order ARMA process are depicted in Fig.1. It is clear that the
GPR method outperforms the PE method in terms of predictability, measured
using Valind. It should be noted that a number of models obtained with the PE
method are not in the figure due to their very bad performance and the very
high value of Valind.

The GPR method is expected to perform even better than the PE method
the higher the ARMA process order. To illustrate this, we perform another
simulation with 100 random ARMA processes of orders 6, 7. For each order and
random process, 50 MC simulations are executed in the same way as for the first
simulation example above. Each time, the ARMA parameters are estimated once
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Table 1: Global performance measured in terms of median values of Valind. The
first value corresponds to the PE and the second to the GPR method. The
percentage of error decrease is reported in the parenthesis.
N/nβ 4 5 10
Order 6 1.45 / 1.13 (-22%) 1.28 / 1.08 (-15.6%) 1.1 / 1.06 (-3.6%)
Order 7 2.28 / 1.13 (-50.4%) 1.47 / 1.08 (-26.5%) 1.13 / 1.05 (-7%)

using the GPR method and once with the PE method (3). To evaluate the model
performance, a validation dataset is again considered of length 10000 samples
and the index Valind is calculated. The global behavior of the two methods is
compared through the median value of Valind among the 50 MC simulations and
in turn the median value among the 100 random processes of same order and
N/nβ . It should be noted that the innovation variance has also been set here
to 1. The results are shown in Table 1 where it is clear that the benefit of the
GPR method of the PE classical approach increases with the order of the ARMA
process considered (percentage value in the table).

6 Conclusions

In this paper, a GPR method is used for the estimation of AR and ARMA pro-
cesses. It is proposed to use prior knowledge about the impulse response of the
inverse model in order to increase the efficiency of the PE methods. Numerical
simulations are provided to illustrate this fact. Currently the work is getting
extended to the estimation of multivariate AR and ARMA processes.
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