
Simplifying Deep Reservoir Architectures

Claudio Gallicchio, Alessio Micheli, Antonio Sisbarra

Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3 - 56127 Pisa, Italy

Abstract. We study the impact of architectural simplifications to the
design of deep Reservoir Computing (RC) models. To do so, we analyze
the effects of shaping the structure of reservoir matrices, reducing the com-
plexity of the deep recurrent network to a minimal setup. Experimental
results point out the benefits of a particularly simple deep RC architecture
with ring topology in each reservoir layer and deterministically constructed
input and inter-reservoir connections.

1 Introduction

Reservoir Computing (RC) [1, 2] denotes a popular class of Recurrent Neural
Network (RNN) models where the state-transition system - the reservoir - is
randomly initialized under stability conditions and only the connections to a
simple output layer - the readout - are adjusted based on a training set. The
resulting efficiency of the training algorithms represents the major characteristic
of the approach. A relevant line of research in RC focuses on studying the
topology of the reservoir, i.e. how the recurrent neurons are connected among
each other [3]. The idea is to operate on algebraic properties of the untrained
weight matrices to ensure that the internal representations of the driving input
signal are richer than what can be obtained by a standard random initialization
[4, 5]. Besides this, constraining the reservoir topology has also the advantage of
simplifying the network design, reducing the complexity of the resulting system
and the impact of randomness in its initialization [6].

Recently, the class of RC models has been extended to include state transi-
tion systems computed by a stacked composition of multiple non-linear reservoir
layers. Under the framework of discrete-time dynamical systems, we refer to this
new class of RC models as Deep Echo State Network (DeepESN) [7]. The appeal
of studying DeepESNs is twofold. Theoretically, they allow to study the intrin-
sic advantages of layering in RNN architectures in the absence of (or prior to)
training of recurrent connections. From the applicative view-point, DeepESNs
provide a great tool for capitalizing on the efficiency of RC training and on the
advantages of deep RNNs at the same time. In particular, in [8] we showed
how properly constructed deep reservoir systems are able to efficiently achieve
state-of-the-art results in complex tasks related to speech and music processing.

In this paper, we go deeper into the analysis of the architectural design of
DeepESN. We do so by studying progressive simplifications to the construction
of deep reservoirs. In particular, taking inspiration from [6], we consider reser-
voirs constrained to a ring topology and non-randomized input and inter-layer
connections. The general aim is to bring together the advantages coming from

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

579

the enriched dynamics of (globally) deep and (locally) ring-shaped reservoirs,
at the same time exploiting the simplified architectural setup, which would en-
able a particularly effective search in the hyper-parameters space. We assess the
impact of these network simplifications in terms of predictive performance on
benchmarks tasks on time-series. Our experimental analysis is conducted also
in comparison to both standard and simplified shallow ESNs.

2 Deep Echo State Networks

Deep Echo State Networks (DeepESNs) [7] are discrete-time input-driven recur-
rent neural models where the dynamical component is a stacked composition of
multiple non-linear untrained reservoir layers, and the output is computed by a
linear output readout layer. The crucial difference with respect to conventional
RC models is that the reservoir is deep, i.e., the recurrent neurons are arranged
in a layered, hierarchical architecture. In this way, the external input time-
series drives the dynamics of the first layer, and the dynamics of each successive
reservoir layer is driven by the state of the previous layer in the stack.

We denote the number of reservoir layers by L, and we consider DeepESNs
where all reservoirs have the same number of neurons N. Considering leaky-
integrator neurons (and dropping the bias terms for ease of notation), the deep
reservoir state transition system is described by the following set of equations:

x
(1)(t) = (1− α)x(1)(t− 1) + α tanh

(

Uu(t) +W
(1)

x
(1)(t− 1)

)

x
(i)(t) = (1− α)x(i)(t− 1) + α tanh

(

V
(i)

x
(i−1)(t) +W

(i)
x
(i)(t− 1)

)

(for i > 1),
(1)

where U is the input weight matrix, V(i) (for i > 1) and W(i) (for i ≥ 1)
are respectively the inter-layer weight matrix and the recurrent reservoir weight
matrix at layer i. Moreover, u(t) is the input at time-step t, and x(i)(t) is the
reservoir state computed at the i-th layer. The system in each layer is initialized
with null state, i.e. x(i)(0) = 0 for all i. Finally, α ≤ 1 controls the leakage.
Interestingly, compared to the case of shallow reservoirs, layering of the recurrent
neurons in DeepESNs results in a sparser (simpler) architecture where some of
the connections have been dropped (adding constraints as analyzed in [7]).

Initialization of DeepESNs is based on asymptotic stability of the set of nested
dynamical systems in (1) (see [9]). This translates into a random initialization of
the weight matrices, followed by a re-scaling of spectral properties. In practice,
for initialization of U it is used a uniform distribution on [−ωin, ωin], and for
V(i) a uniform distribution on [−ωil, ωil]. Recurrent weight matrices W(i) are
initialized from a uniform distribution over [−1, 1] and then are re-scaled to have
a desired effective spectral radius1 value ρ. This procedure identifies the major
hyper-parameters of the model, namely: input scaling ωin, inter-layer scaling ωil

and spectral radius ρ. A further hyper-parameter is given by the leaking-rate α.
The output is computed by applying a dense readout linear layer to the

concatenation of the reservoir activation in each layer. The output at time-step

1The largest among the eigenvalues in modulus.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

580

t, i.e. y(t), is computed as Z [x(1)(t),x(2)(t), . . . ,x(L)(t)]. The readout weights in
Z are the only trained parameters, typically in closed form by pseudo-inversion.

3 Architectural Simplifications

In this paper we study progressive simplifications to the structure of the weight
matrices involved in deep reservoir initialization. The aim is twofold: first of all
simplifying the architectural setup, and, secondly, reducing (up to eliminating)
the role of randomization in the deep network initialization. To this end, we
consider the following DeepESN architectures.
Sparse – For each layer, the reservoir neurons are sparsely connected among
each other, i.e. matrices W(i) are sparse. Such sparse connectivity is random-
ized, and each reservoir neuron has incoming (recurrent) connections from a
number of C other neurons at the same layer (we used C = 10). Input (i.e., U)
and inter-layer matrices (i.e., V(i)) are randomized as described in Section 2.
This setup is used as baseline DeepESN reference in our experiments. Notice
that to fully describe any instance of such neural architecture (i.e., the process
of reservoir initialization) implies a number of “degrees of freedom” that scales
quadratically with N , i.e. the number of neurons per reservoir layer.
Ring – At each layer, reservoir neurons are arranged in a ring, where each neu-
ron receives input from the previous unit in the cycle, and projects its activation
to the successive one. Accordingly, the topology of W(i) matrices is constrained
to a deterministic (structured) sparsity, where the only non-zero entries are those
located in the sub-diagonal and in the top-right corner. All elements of W(i)

are set to the same value, which corresponds to the spectral radius ρ. Input and
inter-layer weight matrices are randomized.
Ring + Simple Input – The deep reservoir architecture is shaped as in the
Ring DeepESN, with the difference that the structure of input weights is sim-
plified as follows. All the weights in U are set to the same value ωin, while the
sign of each entry is obtained in a deterministic fashion, by following the decimal
expansion of the irrational number π, as in [6]. In particular, for decimal values
< 5 the sign is set to −, otherwise it is set to +.
Ring + Simple Input & Inter – The deep reservoir is structured as in the
previous case, and - in addition - the structure of all the inter-layer weight ma-
trices is simplified. Specifically, all the elements of V(i) have the same absolute
value ωil, and the sign of each entry is determined by following the decimal
expansion of π as described in the previous case. This simplified deep reservoir
architecture is shown in Fig. 1. Relevantly, in this setting the architecture of
each DeepESN is fully described by just 3 numbers (the hyper-parameters ωin,
ωil and ρ), which clearly highlights the design simplification with respect to the
basic Sparse setting above. Moreover, it is worth noticing that in this setup all
aspects of randomization in the network initialization have been eliminated.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

581

!"# !"$%&'(

) * &'() + &'(

,
- +

. * . +

/

/

/ /

/

/ /

/

/ /

/

/

!

0

1
1
1
1
0

1
0
0

0

1

0

!"$

) 2 &'(

- 2

. 2

/

/

/ /

/

/

1
0
0

1

0

1

"#$%&'("#$%&') "#$%&'*

Fig. 1: Simplified deep reservoir architecture.

4 Experiments

In what follows, we use d(t) to denote the target output at time-step t.
Datasets. We consider 4 tasks on time-series data. The first is LASER,
where the data consists of sampled intensities from far-infrared laser in chaotic
regime. The second and the third are achieved by discretizing the popular non-
linear Mackey-Glass (MG) differential equation δu(t)/δt =

(

(0.2u(t − τ))/(1 +

u(t − τ)10
)

− 0.1u(t). We consider two MG cases resulting in chaotic dy-
namics, i.e., MG17 corresponding to the choice of τ = 17, and MG30 corre-
sponding to the choice τ = 30. For LASER, MG17 and MG30 the learning
task consists in predicting the next time-step of the the chaotic time-series,
i.e. d(t) = u(t + 1). The last task is based on a nonlinear auto-regressive
moving average of order 10 (NARMA10), where at each time-step t the in-
put comes from a uniform distribution over [0, 0.5], and the target output is

d(t) = 0.3d(t)(t−1) + 0.05d(t)(t−1)
∑10

i=1 d(t)(t− i)+1.5u(t−10)u(t−1)+0.1.
The total number of time-steps is 10092 for LASER, and 10000 for MG17, MG30
and NARMA10. For all the cases, the first 5000 time-steps were used for train-
ing, and the remaining for test.
Settings. We considered DeepESNs with a number of layers L ranging in 2-5.
All layers contained the same number of reservoir units, with the total number of
recurrent neurons being fixed to 100. The same ρ and α were used in all layers,
and the same inter-layer scaling ωil was used for each layer i > 1. We explored
values of ρ ∈ [0.1, 1.5], α ∈ [0.1, 1], ωin ∈ [10−5, 1.5] and ωil ∈ [10−5, 1.5]. Hyper-
parameter values were selected by hold-out model selection on a validation set
containing the last 1000 time-steps of the training data. To this end, we used
random search and generated 30 random configurations. For each configuration,
the performance was averaged (and corresponding std was computed) over a
number of 10 repetitions (with the same hyper-parameters, but different ran-
dom seeds for initialization). Averaging was not required in the Ring + Simple
Input & Inter case, as the network is built in a deterministic fashion. In this

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

582

case, the hyper-parameter search considered 300 random configurations. The
readout we trained by pseudo-inversion, with a washout of 100 steps.

Our analysis is conducted comparatively to shallow reservoir networks, in
which case we limit ourselves to considering the Sparse, Ring and Ring + Simple
Input settings. To this end, we ran experiments with ESNs under the same
experimental settings delineated above for DeepESNs, and considering the same
range for the total number of reservoir neurons (which in this case were arranged
in a single layer). The hyper-parameters of all the deep and shallow RC variants
were chosen individually by model selection.
Results. We assess the networks performance by computing the MSE (the lower
the better). The achieved test set results are provided in Tab. 1.

LASER (MSE)
Architecture ESN DeepESN
Sparse 1.59 e− 3 (±6.2e−4) 3.09 e− 3 (±1.4e−4)

Ring 1.70 e− 3 (±4.6e−4) 3.87 e− 3 (±2.4e−3)

Ring + Simple Input 1.56 e− 3 2.10 e− 3 (±4.0e−4)

Ring + Simple Input & Inter - 1.15 e− 3

MG17 (MSE)
Architecture ESN DeepESN
Sparse 1.42 e− 9 (±8.2e−11) 2.12 e− 9 (±3.5e−10)

Ring 1.53 e− 9 (±1.9e−10) 2.89 e− 9 (±5.3e−10)

Ring + Simple Input 1.57 e− 9 2.68 e− 9 (±3.2e−10)

Ring + Simple Input & Inter - 1.27 e− 9

MG30 (MSE)
Architecture ESN DeepESN
Sparse 1.57 e− 8 (±1.3e−9) 6.86 e− 9 (±4.2e−10)

Ring 4.96 e− 9 (±2.5e−10) 5.26 e− 9 (±4.4e−10)

Ring + Simple Input 3.73 e− 9 4.69 e− 9 (±3.1e−10)

Ring + Simple Input & Inter - 3.15 e− 9

NARMA10 (MSE)
Architecture ESN DeepESN
Sparse 1.71 e− 3 (±3.7e−4) 1.48 e− 3 (±3.3e−4)

Ring 1.32 e− 3 (±5.3e−5) 1.23 e− 3 (±6.2e−5)

Ring + Simple Input 1.02 e− 3 1.22 e− 3 (±1.2e−4)

Ring + Simple Input & Inter - 9.75 e− 4

Table 1: Achieved test results. Best performance is highlighted in bold font.

We can note that simplified DeepESN architectures consistently outperform
Sparse DeepESNs on all tasks. In most cases, the simpler is the deep reservoir
architecture (and the more randomization aspects are eliminated) the better is
the observed performance. Overall, the best result is obtained on all tasks by
the simplest DeepESN, i.e., with Ring + Simple Input & Inter setup. Results in
Tab. 1 confirm the benefit of simple deterministically constructed reservoirs also

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

583

in shallow ESN, in line with [6]. In this case, however, the possible final perfor-
mance enhancement is less pronounced than the one seen for deep reservoirs.

5 Conclusions

We have investigated the effects of architectural simplifications in the design of
deep RC models. Remarkably, a very simple DeepESN with ring topology in
each reservoir layer and deterministically constructed input and inter-layer con-
nections showed the highest performance in comparison to more complex (both
shallow and deep) RC setups. Overall, our analysis put forward a minimalistic
deep RNN architecture, with few degrees of freedom and no randomization in its
construction, as a very effective tool for learning tasks in the time-series domain.

Looking ahead, we believe that the advantages of minimal deep RC architec-
tures can be exploited massively in real-world applications, e.g., in the context of
Machine Learning embedded on edge devices. Moreover, the analysis conducted
in this paper can be capitalized to extend the advantages of minimal deep RC
architectures to the case of learning in graph domains [10].

References

[1] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127–149, 2009.

[2] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667):78–80, 2004.

[3] T. Strauss, W. Wustlich, and R. Labahn. Design strategies for weight matrices of echo
state networks. Neural computation, 24(12):3246–3276, 2012.

[4] P. Tiňo. Dynamical systems as temporal feature spaces. arXiv preprint arXiv:1907.06382,
2019.

[5] M.C. Ozturk, D. Xu, and J.C. Principe. Analysis and design of echo state networks.
Neural computation, 19(1):111–138, 2007.

[6] A. Rodan and P. Tiňo. Minimum complexity echo state network. IEEE transactions on

neural networks, 22(1):131–144, 2010.

[7] C. Gallicchio, A. Micheli, and L. Pedrelli. Deep reservoir computing: A critical experi-
mental analysis. Neurocomputing, 268:87–99, 2017.

[8] C. Gallicchio, A. Micheli, and L. Pedrelli. Design of deep echo state networks. Neural

Networks, 108:33–47, 2018.

[9] C. Gallicchio and A. Micheli. Echo state property of deep reservoir computing networks.
Cognitive Computation, 9(3):337–350, 2017.

[10] C. Gallicchio and A. Micheli. Fast and deep graph neural networks. In Proceedings of

AAAI, 2020. arXiv preprint arXiv:1911.08941.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

584

