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Abstract. We address a survival analysis task where the goal is to
predict the time passed until a subject is diagnosed with an age-related
disease. The main challenge is that subjects’ data are very often censored,
i.e., their time to diagnosis is only partly known. We propose a new
Random Forest variant to cope with censored data, and evaluate it in
experiments predicting the time to diagnosis of 8 age-related diseases, for
data from the English Longitudinal Study of Ageing (ELSA) database.
In these experiments, the proposed Random Forest variant, in general,
outperformed a well-known Random Forest variant for censored data.

1 Introduction

We address the survival analysis problem of predicting the time passed from a
“baseline date” (when a subject is visited by a nurse) until the date of diagnosis
of some age-related disease. The datasets analyzed in this work were derived
from the English Longitudinal Study of Ageing (ELSA) [1] — a survey of ageing
and quality of life among people aged 50 and over. This paper focuses on the
biomedical data in ELSA, such as the results of blood tests and other data
collected by nurses, and information about the subjects’ age-related diseases.

The main challenge in survival analysis is to cope with censored data [2].
Censoring occurs when observed instances have some information available for
estimating the survival time but the information is incomplete. For example, an
individual is lost to follow up, drops out of the study, or does not experience the
event of interest (a disease’s diagnosis in this paper) before the study ends. Clas-
sical regression methods cannot effectively handle censorship, since censorship
introduces uncertainty into the value of the target variable to be predicted.

This paper proposes a new variant of the Random Forest algorithm for coping
with censoring in survival data. We choose Random Forests [3, 4] due to the
algorithm’s good performance of achieving high predictive accuracy in general,
using the power of an ensemble of decision trees to make more robust predictions.

This paper is organised as follows. Section 2 reviews background on survival
analysis. Section 3 describes the creation of the datasets used in the experiments.
Section 4 describes the proposed Random Forest variant. Section 5 reports
experimental results, and Section 6 presents the conclusion.
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2 Background on Survival Analysis

Survival analysis methods aim at analyzing or predicting the time until the
occurrence of an event of interest [5]. Although the time-to-event to be predicted
is a numerical variable, survival analysis is very different from classical regression.
The main difference is the presence of data censoring in survival analysis, which
cannot be effectively handled by traditional linear regression methods.

We focus on right-censoring (as opposed to left-censoring) [5], which is com-
mon in medical research and occurs very often in our datasets. Right-censoring
occurs when the subject dropped out of the study before its end and no event of
interest occurred before the drop out, or when the study ends before the event
of interest occurred for a subject. Note that in right-censoring the last observed
time for a subject is a lower bound for the unknown event occurrence time.

[6] introduced Inverse Probability of Censoring (IPC) weights, where positive
weights are assigned to uncensored instances while the weights of the censored
ones are 0. Hence, a subject with a long survival time is assigned a large IPC
weight, which is inversely proportional to her/his probability of being censored.
The probability of censoring is estimated based on a censoring probability func-
tion, i.e., the probability that the censored time is greater than t, denoted G(t),
as shown in Equation (1) , where nj is the number of subjects in the risk set at
time j, i.e., the set containing subjects who have survived at least to time j, and
cj is the number of subjects who were censored at time j.

G(t) =
t∏

j=0

(
1− cj

nj

)
(1)

Then, the IPC weight of each instance i (wi) is estimated by Equation (2):

wi =

{ 1
G(ti)

, if i is uncensored

0, Otherwise
(2)

Where ti is the survival time observed for the i -th uncensored subject, and
the value of G(ti) is given by Equation (1).

The IPC weight technique for coping with censorship in Random Forest,
called Survival Ensemble, was introduced in [7]. This is used as the baseline
method in our experiments, and has also been used in several survival analy-
sis studies [8, 9, 10]. Survival Ensemble learns a Random Forest model where
each tree was derived from bootstrap data where each instance is sampled with
a probability based on its IPC weight, so that censored instances (with IPC
weight = 0) are not used in the tree-building process. This has the clear disad-
vantage of ignoring potentially very useful information for building the model,
namely the censored instances’ feature values and their relationships with the
partially observed survival time (until the time of censoring). This disadvantage
is particularly serious in the datasets used in our experiments, when the large
majority of instances are censored.
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3 Dataset Creation

The datasets created in this paper were derived from the English Longitudinal
Study of Ageing (ELSA) [1] — www.elsa-project.ac.uk/. The data was collected
across 8 waves, with a two-year gap between consecutive waves. In the created
datasets, the instances represent subjects in the ELSA database and the pre-
dictive features represent mainly biomedical data collected by nurses in wave
2 (the “baseline” wave), including age and gender. We use as baseline wave 2
because this was the first wave when a nurse collected biomedical data from sub-
jects. We created 8 datasets, all with the same set of 44 predictive features from
wave 2, but each with a different target variable (to be predicted) measuring the
time passed (in months) from the date when a subject received a nurse visit in
wave 2 until the date when the subject was first diagnosed with a given disease.
The 8 age-related diseases used as target variables are: Angina, Heart Attack,
Diabetes, Stroke, Arthritis, Alzheimer’s, Cancer and Psychiatric disorder.

The main challenge in our dataset creation was to define a pair of “tar-
get” and “uncensorship status” variables for each of the above 8 age-related
diseases. Each “uncensorship status” variable takes the value “1” or “0” to indi-
cate whether or not a subject’s target variable value is uncensored (fully known)
or censored (partly known), respectively. Hence, if a subject has uncensored
status = 1, that subject’s target variable records the true time passed until
her/his first diagnosis of a disease; whilst if a subject has uncensored status =
0, that subject’s target variable records only the last time when the subject was
observed not to have the diagnosis, which is a lower bound for true value of the
target variable.

To determine the value of each subject’s target and uncensored status vari-
ables, we first tried to obtain the values of ELSA database variables indicating
the date the subject was first diagnosed with a disease, and then distinguish
between two cases. First, if the values of those two variables were known for
a subject, she/is is considered uncensored, and her/his target variable value is
directly computed as the number of months passed between the nurse visit to
that subject in wave 2 and the date of the subject’s first diagnosis for that dis-
ease. In the second case, however, the variables indicating year and month of
first diagnosis have missing values for a subject (a very common scenario), thus
the subject is considered censored. In this case, the computation of the target
variable value is much more complex, and it is summarized here into three steps.
First, we combine information from several ELSA variables to create a new set
of intermediary variables, each indicating whether or not the patient was diag-
nosed with a given disease at a given wave. Second, by comparing the values
of these intermediary variables for a given subject and a given disease across all
waves, we determine the last date when the subject was observed and still did
not have the diagnosis for that disease. Third, using results of the previous step,
the target variable value for each subject and each disease is computed as the
number of months passed between the nurse visit to the subject in wave 2 and
the last date when the subject was known not to be diagnosed with the disease.
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In this case, however, that target variable value is a lower-bound to the unknown
number of months until first diagnosis (i.e. the subject is censored), and so the
“uncensored status” variable is set to 0.

4 The Proposed Random Forest Variant

The proposed variant of Random Forests for survival analysis is based on the
idea of imputing the value of the target variable of each censored instance based
on its individual lower-bound and upper-bound. The calculation of the target
value’s lower-bound for each instance was explained in Section 3. The target
value’s upper-bound for each instance is computed as the number of months
passed between the date of the nurse visit and the end of wave 8 (last wave) for
censored subjects only. In addition, in order to increase the variance of the trees
in the forest, this imputation process is applied independently for every bootstrap
training set, as shown in Figure 1. Therefore, the same censored instance may
contain different imputed target values in different bootstrap samples. This
means that an imputed value of a censored instance is a uniformly random
value between its lower-bound and upper-bound. Note that this imputation
allows all other procedures of the Random Forest algorithm to be used without
modification.

Bootstrap T1

regression tree K1

Aggregation
Procedure

Prediction 1

Bootstrap T2

regression tree K2

Prediction 2

Bootstrap TS

regression tree KS

Prediction S

The model's prediction

Original Training set (T)

Random Sampling of n instances with replacement

Imputing T1 Imputing T2 Imputing TS

Fig. 1: Overview of the proposed Random Forest variant
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5 Computational Results

We report results for 8 datasets, created as described in Section 3. Recall that
each dataset concerns a different age-related disease where the target variable to
be predicted is the time passed (in months) until the first diagnosis of that disease
for a subject, whilst all datasets have the same predictive features (derived from
the baseline wave 2 in ELSA). The predictive performance of the Random Forest
(RF) models was estimated by the Concordance index (C-index), which can be
interpreted as the probability of correctly ordering the predicted survival values
for a randomly chosen pair of subjects whose actual survival times are different.
The C-index was adapted for censored data as described in [11], by considering
the concordance of actual survival times (diagnosis times in this work) versus
predicted survival times among pairs of subjects whose survival outcomes can
be ordered with respect to their survival times, i.e., among pairs where both
subjects were diagnosed with a certain disease, or one subject was diagnosed
before the other subject is censored. The C-index is computed by Equation (3)
where Usable(i,j) and Agreed order(i,j) are Boolean variables taking the value
true if the subject pair (i,j ) can be ordered and their target variable values

agree as defined by Equation (4), where T̂i and Ti denote the predicted and
actual target values of the i -th subject, respectively.

C-index =
|{(i, j)| Usable (i, j) AND Agreed order (i, j)}|

|{(i, j)|Usable(i, j)}| (3)

Agreed order(i, j) =

⎧⎨
⎩

Yes, if T̂i > T̂j and Ti > Tj

Yes, if T̂j > T̂i and Tj > Ti

No, otherwise

(4)

All experiments were performed using nested cross-validation, where 5-fold
inner cross-validation performs hyper-parameter tuning and 10-fold outer cross-
validation estimates predictive performance. We tuned two hyper-parameters of
the Random Forest algorithm: the node size (the minimum number of instances
allowed at leaf nodes) and mtry (the number of randomly sampled candidate
features at each tree node). The tuning procedure tried 3 node size values (5, 7
and 10) and 4 mtry values (4, 7, 10, 13), leading to 12 combinations.

Table 1 shows the C-index values and the Standard Error of the Mean (SEM)
(over 10-fold cross-validation) obtained by two variants of Random Forest (RF),
the RF described in [7] (IPC weight approach), and our proposed Random
Target-Imputation Forest (RTIF) method. The second column of this table
shows the relative frequency (ratio) of uncensored instances in each dataset.
Note that in all datasets the large majority of instances are censored. As re-
ported in the C-index columns, the proposed RTIF obtained the best result in 7
out of the 8 datasets. Both RF variants had poor performance (C-index around
0.5) in 3 datasets (Arthritis, Cancer and Psychiatric disorder); whilst the three
highest C-index values are 0.7742, 0.7443 and 0.6366, obtained by the proposed
RTIF in Alzheimer, Diabetes and Stroke datasets, respectively.
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Table 1: Predictive performance obtained by two variants of Random Forests.
Dataset IPC weight [7] proposed RTIF

Disease uncensoring ratio C-index SEM C-index SEM
Angina 165/6488 (2.5%) 0.5691 0.0297 0.5723 0.0288
HeartAtt 186/6607 (2.8%) 0.5894 0.0206 0.6228 0.0266
Diabetes 416/6500 (6.4%) 0.6796 0.0196 0.7443 0.0171
Stroke 270/6632 (4.1%) 0.5983 0.0215 0.6366 0.0335

Arthritis 784/4276 (18.3%) 0.5068 0.0136 0.5078 0.0196
Alzheimer 69/6825 (1.0%) 0.6576 0.0389 0.7742 0.0338
Cancer 562/6386 (8.8%) 0.5071 0.0171 0.5135 0.0199

Psychiatric 219/5972 (3.5%) 0.4834 0.0225 0.4692 0.0335

6 Conclusions

We have proposed a new Random Forest variant for coping with heavy cen-
soring in survival data. This variant stochastically imputes the values of the
target variable for censored instances by using instance-specific lower and up-
per bounds. The experimental results have shown that our proposed variant in
general outperformed the baseline method [7] in 8 age-related disease datasets.
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