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Abstract. We consider statistical learning problems, when the distribution P’ of
the training observations Z;, ..., Z, differs from the distribution P involved in the
risk one seeks to minimize (referred to as the test distribution) but is still defined on
the same measurable space as P and dominates it. In the unrealistic case where the
likelihood ratio ®(z) = dP/dP’(z) is known, one may straightforwardly extends the
Empirical Risk Minimization (ERM) approach to this specific transfer learning setup
using the same idea as that behind Importance Sampling, by minimizing a weighted
version of the empirical risk functional computed from the *biased’ training data Z;
with weights ®(Z}). Although the importance function ®(z) is generally unknown in
practice, we show that, in various situations frequently encountered in practice, it
takes a simple form and can be directly estimated from the Z!’s and some auxiliary
information on the statistical population P. By means of linearization techniques,
we then prove that the generalization capacity of the approach aforementioned is
preserved when plugging the resulting estimates of the ®(Z!)’s into the weighted
empirical risk. Beyond these theoretical guarantees, numerical results provide strong
empirical evidence of the relevance of the approach promoted in this article.

1 Introduction

Prediction problems are of major importance in statistical learning. The main paradigm
of predictive learning is Empirical Risk Minimization (ERM in abbreviated form), see
e.g. [8]. In the standard setup, Z is a random variable (r.v. in short) that takes its values
in a feature space Z with distribution P, @ is a parameter space and £ : @ X Z — R, is
a (measurable) loss function. The risk is then defined by: V6 € O,

Rp(0) = Ep [£(6,2)], (1

and more generally for any measure Q on Z: Rp(6) = fz £(6, z)dQ(z). In most practical
situations, the distribution P involved in the definition of the risk is unknown and learning
is based on the sole observation of an independent and identically distributed (i.i.d.)
sample Z;, ..., Z, drawn from P and the risk must be replaced by an empirical
counterpart (or a possibly smoothed/penalized version of it), typically:

— 1 <
Re(6) = ~ > 6.2) = Ry, (O). @)
i=1

where Fn = (1/n) Y, 6z is the empirical measure of P and ¢, denotes the Dirac
measure at any point z. The performance of minimizers of (2) can be studied by means
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of concentration inequalities, quantifying the fluctuations of the maximal deviations
SUPyee @p(@) — Rp(6)] under various complexity assumptions for the functional class
F ={€0, -): 0 e 0} (e.g. VC dimension, metric entropies, Rademacher averages),
see [3] for instance. Although the Big Data era features undeniable opportunities for
machine-learning solutions, poor control of the data acquisition process puts practicioners
at risk of jeopardizing the generalization ability of the algorithms. Bias selection issues
in machine-learning are now the subject of much attention in the literature, see e.g. [3].
Machine learning algorithms trained with baised training data, e.g. in terms of gender or
ethnicity, raise concerns about fairness in machine learning, see [[14] for further details.
Throughout the article, we consider the case where the i.i.d. sample Z;, ..., Z;
available for training is not drawn from P but from another distribution P’, with respect
to which P is absolutely continuous, and the goal pursued is to set theoretical grounds
for the application of ideas behind Importance Sampling (IS in short) methodology to
extend the ERM approach to this learning setup. This problem is a very particular case
of Transfer Learning (see e.g. [12l]), a research area that encompasses general situations
where the information/knowledge one would like to transfer may take a form in the
target space very different from that in the source space.
Weighted ERM (WERM). In this paper, we investigate conditions guaranteeing that
values for the parameter 6 that nearly minimize (T)) can be obtained through minimization
of a weighted version of the empirical risk based on the Z!’s, namely

Ruun(0) = Ry (6), 3)

where FW,,, =(/n) YL, widz and w = (wy, ..., wy) € R} is a certain weight vector.
Of course, ideal weights w* are given by the likelihood function ®(z) = (dP/dP’)(z):
wi = ®(Z) fori € {1, ..., n}. In this case, the quantity @ is obviously an unbiased
estimate of the true risk (1)), i.e. Ep [RR* (O] = Rp(6), and generalization bounds
for the Rp-risk excess of minimizers of the empirical risk with ideal weights can be
directly established by studying the concentration properties of the empirical process
related to the Z!’s and the class of functions {®(-){(6, -) : 6 € O} (see sectionbelow).
However, the importance function ® is unknown in general, just like distribution P. It
is the major purpose of this article to show that, in far from uncommon situations, the
(ideal) weights w} can be estimated from the Z{s combined with auxiliary information
on the target population P. Such favorable cases include in particular classification
problems where class probabilities in the test stage differ from those in the training step,
risk minimization in stratified populations (see [2]]), with strata statistically represented
in a different manner in the test and training populations, positive-unlabeled learning
(PU-learning, see e.g. [9]]). Learning rate bounds for minimizers of the corresponding
risk estimate are proved and, beyond these theoretical guarantees, the performance of
the weighted ERM approach is supported by convincing numerical results.

2 Importance Sampling - Risk Minimization with Biased Data

Here and throughout, the indicator function of any event & is denoted by I{&}, the sup
norm of any bounded function 2 : Z — R by ||/||.. We place ourselves in the framework
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of statistical learning based on biased training data previously introduced. As a first go,
we consider the unrealistic situation where the importance function ® is known, insofar
as we shall subsequently develop techniques aiming at mimicking the minimization of
the ideally weighted empirical risk

— 1 <& ,
7QW*J!(G) = ;l § W7€(97 Zi )’ (4)
i=1

namely the (unbiased) Importance Sampling estimator of (T)) based on the instrumental
data Z{, ..., Z;. The following result describes the performance of minimizers 5;; of
(@). Since the goal of this paper is to promote the main ideas of the approach rather
than to state results with the highest level of generality due to space limitations, we
assume throughout the article for simplicity that £ and @ are both bounded functions. For
o1, ..., 0, independent Rademacher random variables (i.e. symmetric {—1, 1}-valued
r.v.’s), independent from the Z!’s, we define the Rademacher average associated to the
class of function ¥ as R/(¥) := E, [sup(,e@, % |Zj':1 oit(6,Z] )H . This quantity can be
bounded by metric entropy methods under appropriate complexity assumptions on the
class F, it is for instance of order Op(1/ 4/n) when F is a VC major class with finite VC
dimension, see e.g. [4].

Lemma 1. With probability at least 1 — 6, we have: ¥n > 1,

0} 2log(1/o
Ro(@;) - minRp(6) < 4IOIE[R,(F)] + 200l sup €(6.2)y e/,
b0 0,€0xZ n

Of course, when P’ = P, we have ® = 1 and the bound stated above simply describes
the performance of standard empirical risk minimizers. Of course, the importance
function @ is generally unknown and must be estimated in practice. As illustrated by the
elementary example below (related to binary classification, in the situation where the
probability of occurence of a positive instance significantly differs in the training and test
stages), in certain statistical learning problems with biased training distribution, ® takes
a simplistic form and can be easily estimated from the Z;’s combined with auxiliary
information on P.

Binary classification with varying class probabilities. The flagship problem in super-
vised learning corresponds to the simplest situation, where Z = (X, Y), Y being a binary
variable valued in {—1, +1} say, and the r.v. X takes its values in a measurable space
X and models some information hopefully useful to predict Y. The parameter space
0 is a set G of measurable mappings (i.e. classifiers) g : X — {-1, +1} and the loss
function is given by £(g, (x,y)) = I{g(x) # y} for all gin G and any (x,y) € Xx{-1, +1}.
The distribution P of the random pair (X, Y) can be either described by X’s marginal
distribution u(dx) and the posterior probability (x) = P{Y = +1 | X = x} or else by
the triplet (p, F, F_) where p = P{Y = +1} and F,(dx) is X’s conditional distribution
given Y = o1 with o € {—, +}. It is very common that the fraction of positive instances
in the training dataset is significantly lower than the rate p expected in the test stage,
supposed to be known here. We thus consider the case where the distribution P’ of the
training data (X1, Y]), ..., (X}, Y;) is described by the triplet (p’, F', F_) with p’ < p.

n>-n
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The likelihood function takes the simple following form

1—p def
= 90,
—-p

D(x,y) =1Ify = +1}1§ +1y = —1)

which reveals that it depends on the label y solely, and the ideally weighted empirical
risk process is

1-p1

D p 1 ’ ’
Roa@ =0 D) M) ==+ 320 ) Mg =+1. ()

iY/=1 iY/=-1

In general the theoretical rate p’ is unknown and one replaces (3) with

— 1=
Rira(g) = 4 D Hgx) = =1+ —£ 3 Tg(x) = +1), (©)

+iy=1 T iYi=—1
f f

where n, = YL I{Y! = +1} = n—n’, W' = ¢(Y/) and $(y) = ly = +1}np/n, + I{y =
—1}n(1 — p)/n’. The stochastic process above is not a standard empirical process but a
collection of sums of two ratios of basic averages.

Theorem 1. Let & € (0, 1/2). Suppose that p" € (&, 1 — &). Let g, be any minimizer of
Rig- n over class G. For any 6 € (0, 1), we have with probability at least 1 — §:

Rp(@,) - inf Ry(g) <~ 1= P) [ZE[R;@] + \/M] b2 flosd/o)
gcG & n & 2n

as soon as n > 210g(4/6)/&*; where R.(G) = (1/mEq[sup,eq | X oilig(X7) # Y]}

We now briefly introduce more general transfer learning problems where WERM

can be applied by following the same steps as above: i) express the likelihood ratio
® = dP/dP’, ii) approximate @ by @ based on samples from P’ combined with side
information on P, and iii) apply WERM with weights given by . We only describe step
i) below, due to space limitations.
Learning from biased stratified data. Consider a general mixture model, where
distributions P and P’ are stratified over K > 1 strata. Namely, Z = (X,S) and Z" =
(X’,S") with auxiliary random variables S and S’ (the strata) valued in {1, ..., K}. We
place ourselves in a stratum-shift context, assuming that the conditional distribution
of X given S = k is the same as that of X’ given S’ = k, denoted by Fj(dx), for any
ke{l, ..., K}. However, stratum probabilities p, = P(S = k) and p; = P(S’ = k) may
possibly be different. In this setup, the likelihood function depends only on the strata
and can be expressed in a very simple form, as follows:

P = s = g
= A

Positive-Unlabeled Learning. Relaxing the stratum-shift assumption made in the pre-
vious subsection, the importance function becomes more complex and writes: ®(x, s) =
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jTP,(x, s) = Zle s = k}%j_if(x)’ where Fy and F) are respectively the conditional
distributions of X given § = k and of X’ given S’ = k. The Positive-Unlabeled (PU)
learning problem, which has recently been the subject of much attention (see e.g. [9l,
[?1, [?]), provides a typical example of this situation. The testing and training distri-
butions P and P’ are respectively described by the triplets (p, F', F_) and (q, F+, F),
where F = pF, + (1 — p)F_ is the marginal distribution of X. Hence, the objective
pursued is to solve a binary classification task, based on the sole observation of a training
sample pooling data with positive labels and unlabeled data, g denoting the theoretical
fraction of positive data among the dataset. As noticed in [9]] (see also [?], [?]), the
likelihood/importance function can be expressed in a simple manner, as follows:

p d

Y(x,y) € Xx{-1, +1}, O(x,y) = £]I{y = +1}+Ll[{y =-1}-— F. Oy = -1}.
q 1-¢g 1-gq dF

3 Numerical Experiments

This section illustrates the impact of reweighting by the likelihood ratio on classification
performances, as a special case of the general strategy presented in Section [2}

We present an experiment that leverages the structure of the well-known ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset to illustrate the learn-
ing from biased stratified data setting. The code of the experiments can be found at
https://tinyurl.com/qwthb9q (Google drive). The challenge consists in learning
a classifier from 1.3 million training images spread out over 1,000 classes. Perfor-
mance is evaluated using the validation dataset of 50,000 images of ILSVRC as our test
dataset. ImageNet is an image database organized according to the WordNet hierarchy,
which groups nouns in sets of related words called synsets. In that context, images
are examples of very precise nouns, e.g. flamingo, which are contained in a larger
synset, e.g. bird. The impact of reweighting in presence of strata bias is illustrated
on the ILSVRC classification problem with broad significance synsets for strata. To
do this, we encode the data using deep neural networks. Specifically our encoding is
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Fig. 1: Results of the strata reweighting experiment with ImageNet for a linear model.

519


https://tinyurl.com/qwthb9q

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

the flattened output of the last convolutional layer of the network ResNet50 introduced
in [[L1]. It was trained for classification on the training dataset of ILSVRC. A total
of 33 strata are derived from a list of high-level categories provided by ImageNet at
http://www.image-net.org/about-stats. By default, strata probabilities p; and
p; for 1 < k < K are equivalent between training and testing datasets, meaning that
reweighting by ® would have little to no effect. Leveraging the abundance of train data,
we discarded elements of the train set in each strata in a way that induces a parameterized
strata biais.

We report better performance when reweighting using the strata information, com-
pared to the case where the strata information is ignored (Unif.). For comparison, we
added two reference experiments: one which reweights the train instances by the class
probabilities (Class), which we do not know in a stratified population experiment, and
one with more data and no strata bias (No bias) because it uses all of the ILSVRC train
data. Tests with a multilayer perceptron (MLP) did not perform as well, see the code.

References
[1] J. Bekker and J. Davis. Beyond the selected completely at random assumption for
learning from positive and unlabeled data. CoRR.

[2] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai. Man is to computer
programmer as woman is to homemaker? debiasing word embeddings. In NIPS,
2016.

[3] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification : a survey of
some recent advances. ESAIM: Probability and Statistics, 2005.

[4] S.Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymp-
totic Theory of Independence. OUP Oxford, 2013.

[5] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Springer, 1996.

[6] M. C. du Plessis, G. Niu, and M. Sugiyama. Analysis of learning from positive
and unlabeled data. In NIPS, 2014.

[7] M. C. du Plessis, G. Niu, and M. Sugiyama. Convex formulation for learning from
positive and unlabeled data. In ICML, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, 2015.

[9] R. Kiryo, G. Niu, M. C. du Plessis, and M. Sugiyama. Positive-unlabeled learning
with non-negative risk estimator. In NIPS, 2017.

[10] S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345-1359, Oct 2010.

[11] M. Zafar, 1. Valera, M. Gomez-Rodriguez, and K. Gummadi. Fairness constraints:
A flexible approach for fair classification. JMLR, 2019.

520


http://www.image-net.org/about-stats

	Introduction
	Importance Sampling - Risk Minimization with Biased Data
	Numerical Experiments



