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Abstract. This paper validates a machine learning framework that
enables processing on resource limited devices. The discussed framework
allows both inference and learning to be executed on the edge. More specif-
ically, a Least-Squares Support Vector Machine (LS-SVM) framework with
a time-recursive learning algorithm is evaluated in an application where
person presence is estimated based on acoustic signals only. For this pur-
pose, a real-life acoustical dataset of 555 hours was collected in an office
environment for the evaluation of the on-edge machine learning framework.

1 Introduction

Recent advances in the domain of ’Internet of Things’ (IoT) have led to a wide
range of off-the-shelf connected devices developed specifically for (indoor) moni-
toring applications. Today’s IoT devices are known to be small, energy efficient
and rather cheap allowing unobtrusive integrations in domestic and public en-
vironments at a low cost. As the amount of information an IoT device captures
is increasing, shifting data processing closer to the sensor becomes more im-
portant and is known by ’on-edge processing’. On-edge processing reduces the
communication bandwidth and related power consumption, and comes with the
advantage that no privacy sensitive data must be transmitted. This work eval-
uates a machine learning framework based on a Least-Squares Support Vector
Machine (LS-SVM) that enables both inference and learning on the network
edge where typically only a limited amount of resources are available. For learn-
ing, a time-recursive LS-SVM strategy is adopted. This implies that all model
parameters are updated in a stepwise manner from small batches of newly col-
lected samples only and thereby reducing the required memory footprint of the
embedded platform.

The use of IoT-enabled devices to obtain an intelligent behaviour and to
facilitate home automation gained a lot of research interest in recent years and
is known by ’smart homes’ [1]. Research has shown that residential, public and
commercial buildings account for 20% to 40% of the total energy demand in the
developed countries [2]. The main energy consumers are the so-called lighting,
heating, ventilation and air conditioning (L-HVAC) systems and are accountable
for up to 70% of the total energy consumption [2]. Reliable presence detection
could dynamically control the L-HVAC devices resulting in an overall reduced
energy consumption and an improved user comfort.
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Passive infrared (PIR) sensors are currently the most commonly used type
of presence (motion) detectors due to their accurate detection performance, low
power requirements, and are easy to install and calibrate [5]. However, the main
disadvantages of PIR based presence detection are (i) the need of line-of-sight
(LOS), (ii) limited operating range and field of view (FOV), (iii) the inability
to detect (near) static persons, and (iv) that it cannot provide detailed context
information about the environment being monitored [5]. Although acoustics are
a rich source of information that glean useful insights about the monitoring con-
text, the use of acoustics as a sensing modality for occupancy detection received
limited attention in the research community. The proposed acoustic presence
detection approaches in the literature are either focussing on classifying daily
activities [3, 4] or on classifying human produced sounds such as speech [6, 7]
and footsteps [8]. The development of an acoustic presence detector being able
to discriminate ’presence’ from ’absence’ related sounds is to the best of our
knowledge not yet investigated.

The remainder of this paper is organised as follows: Section 2 explains the
used on-edge adaptive machine learning algorithm. Section 3 introduces the
experimental specific details of the performed experiments regarding acoustic
presence detection. The obtained results are discussed in Section 4 and are
followed by the final concluding remarks given in Section 5.

2 On-edge learning and classification

The on-edge adaptive acoustic classifier model used in this work is based on a
least-squares support vector machine (LS-SVM) framework. A LS-SVM basi-
cally preserves the SVM methodology but introduces a simplification via equal-
ity constraints and a least-squares optimisation [9]. Let us denote the dataset
by {(xt, yt)}Tt=1 with t being the current time step and T the total number of
samples. Each sample xt ∈ X ⊂ RD is a column vector in the D-dimensional
input space with yt ∈ Y ⊂ {−1,+1} being its corresponding class label or target
value. Hence, the objective of a kernelised LS-SVM can be expressed to find a
decision function f : X → Y endowed with a kernel k, where k : X ×X → Y is a
symmetric positive definite function (i.e. Gaussian radial basis function), such

that J(f) =
∑T

t=1

(
yt − f(xt)

)2
+ γ‖f‖2Hk

, with γ as regularisation parameter,
is minimised in the reproducing kernel Hilbert space (RKHS). The Representer
theorem tells that any solution to this problem has a representation in the form
f(·) =

∑T
t=1 βtk(xt, ·), i.e. as a sum of kernels centred on the data [10]. Plugging

this back into the original problem leads to

min
β∈RT

J(β) = ‖y−Kβ‖2 + γβ>Kβ, (1)

with y ∈ {−1,+1}T the label vector, K ∈ RT×T the dense kernel matrix, i.e.
[K]ij = k(xi,xj) of pairwise similarities, and β ∈ RT the parameter vector.
From (1) the parameters β can obtained by solving

β = (K>K + γK)−1K>y (2)
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due to K being symmetric and positive definite. Solving (2) requires O(T 3) op-
erations and becomes computationally expensive in case of large-scale datasets.

The subset-of-regressors method (SR) approximates the kernel function on
arbitrary points through linear combinations of kernels selected from a set of
prototypes (PV) [11]. Consider that PV is given by {x̃m}Mm=1, with M � T ,
and is defined by the first M samples in {xt}Tt=1. Hence, the true kernel is ap-
proximated by K ≈ K(TM)K

−1
(MM)K

>
(TM) with K(MM) ∈ RT×T being the kernel

matrix corresponding to the prototypes (i.e. the upper left M ×M submatrix
of K) and K(TM) ∈ RT×M being the first M columns of K. The problem given
by (1) can now be rewritten into

min
β∈RM

J(β) = ‖y−K(TM)β‖2 + γβ>K(MM)β, (3)

which has as solution

β = (K>(TM)K(TM) + γK(MM))
−1K>(TM)y. (4)

Despite its similarity with (2), the complexity has now been reduced to O(MT 2)
operations. In addition, in [12] a time-recursive variant of (3) is proposed where
both the parameter vector β and the set of prototypes in PV can be updated
from the newly observed input-output pair (xt+1, yt+1) only. In this work, we
will adopt the method of [12] in the following two operating modes.

Fixed-model architecture learning: evaluates the framework when PV
is initialised in advance by randomly drawing M samples from the entire training
set resulting in a fixed-model architecture. The parameter vector β is updated
recursively every time a new input-output pair (xt+1, yt+1) is observed by using
the normal step recursive least-squares (RLS) updates as proposed in [12].

Adaptive-model architecture learning: evaluates the framework when
both PV and β are updated from the incoming data. This learning strategy
allows the model architecture to adapt over time resulting in an adaptive-model
behaviour. More specifically, the model starts with an empty set of prototypes
and updates both PV and β from (xt+1, yt+1) using the RLS updates of the
normal, growing and pruning step as proposed in [12].

Deciding whether xt+1 must be included as prototype or not is done by the
two-part criterion as proposed in [12]. Skipping the mathematical derivations
and equations in [12], the first part basically measures the ’novelty’ (∆nov) of
the current sample, i.e. whether it is sufficiently different from those already
stored in PV, and the second part determines the ’usefulness’ (∆use) of the
candidate prototype, i.e. the reduction in regularised cost. Only the samples
having a ∆nov∆use > τ will be added as prototype.

3 Experimental setup

In this work the previously discussed on-edge learning and classification frame-
work is evaluated in the context of presence detection based on acoustic signals.
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3.1 Dataset

A real-life acoustic dataset was recorded in an office environment with dimensions
7.2 × 6.6 meter. The acoustic sensor was placed next to the door entrance at
an height of 1.2 meter and the used sampling frequency was set to 32 kHz with
a 16 bit resolution. In total 555 hours of data, i.e. 105 hours of presence and
450 hours of absence, were recorded over a period of 28 days and was labelled
on-the-fly (i.e. person count) by means of pressing a button press when entering
or leaving.

In total four independent folds were generated for the experiments with a
ratio of 75% for training and 25% for testing. Next, the training sets were
balanced to an equal number of presence and absence instances in order to
eliminate the potential influence of class imbalance during training.

3.2 Acoustic feature extraction

The used acoustic features are the well-known Mel-Frequency Cepstral Coeffi-
cients (MFCC). An energy based sound activity detector was used to determine
the acoustical relevant parts in the data, and only the MFCCs are extracted when
the data contains sufficient energy. In this work, default 14th order MFCCs are
computed from the data on a 25 ms window basis with a frame shift of 10 ms.

Next, the MFCCs are processed into a statistical representation containing
the cepstral means and standard deviation in order to reduce the number of
feature vectors per time instance. The latter is done on a 500 ms window basis
(50 frames) with an overlap of 250 ms (25 frames).

3.3 Evaluation score

The used evaluation score for tuning the hyperparameters (i.e. RBF-kernel band-
width and regularisation parameter) and to analyse the obtained results is based
on the ’true positive rate’ (tpr) and ’false positive rate’ (fpr). More specifically,
the score is defined by d =

√
fpr2 + (1− tpr)2 and needs to be minimised. The

motivation to use this score is that we want to find a solution such that the Eu-
clidean distance to the optimal condition, i.e. tpr = 1 and fpr = 0, is minimised
since missed detections cause considerable user inconvenience, e.g. turning off
the L-HVAC system when someone is still present in the environment, while a
large number of false presence detections leads to lower energy savings.

4 Results

The obtained results for both the fixed-model and adaptive-model architecture
are shown in Figure 1 and are compared to an offline SVM solution where all
model parameters are estimated in batch mode (i.e. no recursive updates). The
relation between the max. number of prototypes (M) in PV and the amount of
seen data is examined regarding presence detection performance. All hyperpa-
rameters, i.e. RBF-kernel bandwidth, regularisation parameter and τ (in case of

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

682



0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

1
0
0
0
 

2
0
0
0
 

3
0
0
0
 

4
0
0
0
 

5
0
0
0
 

6
0
0
0
 

7
0
0
0
 

8
0
0
0
 

9
0
0
0
 

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

2
1
0
0
0

2
2
0
0
0

2
3
0
0
0

2
4
0
0
0

2
5
0
0
0

2
6
0
0
0

2
7
0
0
0

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Fig. 1: The obtained presence detection results in function of the number of seen
data for both operating modes.

adaptive-model architecture learning), were tuned in advance by a grid-search
on all data. Note that an evaluation on the test set is done after each 1000
updates.

By analysing the fixed-model architecture results it can be clearly seen that
similar presence detection scores are obtained as with the offline SVM setting.
However, the main advantage of the fixed-model architecture solution is (i) that
the parameter vector β can be updated recursively without the need of recalling
all past seen samples and (ii) that the model complexity can be directly con-
trolled by the number of prototypes in PV. The final presence detection scores
yield a true positive rate (tpr) of 93.5% and a false positive rate (fpr) of 10.3%
when M = 500. Increasing the number of prototypes to M = 2000 further im-
proves the presence detection performance to a tpr of 94.6% and a fpr of 6.9%
but comes with a higher computational complexity. Note that the dynamical
nature of the learning can be clearly seen in the region between 7000 and 12000
training samples. During this period of time a specific type of background noise
was recorded, i.e. sounds related to renovation works in the building next to our
office, that reduced the model performance. When the construction works were
finished the model was automatically adapted to converge to a solution that has
similar performance as that of the offline SVM. The adaptive-model architecture
results on the other hand are slightly less accurate compared to the fixed-model
architecture solution but it comes with the advantage that we do not need to
initialise PV in advance. The reason for the decreased presence detection per-
formance is basically due to higher number of model parameters needing to be
learned from the same amount of data (i.e. more complex learning task). The
final obtained presence detection results are a tpr of 82.9% and a fpr of 10.3%
for M = 500, and a tpr of 92.2% and a fpr of 11.8% for M = 2000.
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5 Conclusion

This paper discusses a Least-squares Support Vector Machine (LS-SVM) learn-
ing framework that can be deployed near the sensor on the extreme edge. Two
different operating modes were examined, i.e. a fixed-model architecture and an
adaptive-model architecture, employing a time-recursive learning strategy and
were compared to an offline SVM solution acting as a baseline. The introduced
framework was validated in the application of acoustic presence detection on 555
hours of real-life data collected in an office environment. The obtained results
indicate that the fixed-model architecture operating mode achieves similar pres-
ence detection scores compared to the offline SVM solution. The adaptive-model
architecture results on the other hand are slightly less accurate, but comes with
the advantage that no initialisation is required. Future research will mainly fo-
cus on (i) further improving the adaptive-model architecture operating mode,
(ii) the use of a multi-modal dataset to further improve the overall detection
performance and (iii) the development of a real-life demonstrator embedded on
a microcontroller (i.e. ARM Cortex M7).
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