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Abstract. Random Projection (RP) is a popular and efficient tech-
nique to preprocess high-dimensional data and to reduce its dimension-
ality. While RP has been widely used and evaluated in stationary data
analysis scenarios, non-stationary environments are not well analyzed. In
this paper we provide a profound evaluation of RP on streaming data. We
discuss how RP can be bounded for streaming data using the Johnson-
Lindenstrauss (JL) lemma. In particular we analyze the effect of concept
drift, as a key challenge for streaming data. We also provide experiments
with RP on streaming data, using state-of-the-art streaming classifiers like
Adaptive Hoeffding Tree, to evaluate its efficiency.

1 Introduction

A common problem in data analysis tasks, like classification is the high di-
mensionality of the data. Given the data is intrinsically low dimensional, the
dimensionality can be reduced. To address this problem, there exist different pro-
jection and embedding methods. The most common projection technique is the
Principal Component Analysis (PCA). But also embedding techniques like Lo-
cally Linear Embedding, ISOMAP, Multidimensional Scaling and t-distributed
Stochastic Neighbour Embedding (t-SNE) are widely used [14].

The problem of these methods is, that they are often working on high-
dimensional but not very high-dimensional data, e.g. thousands of input di-
mensions. Also the PCA is costly taking O(d2n+ d3), where n is the number of
samples and d the number of features. Hence, less expensive dimensionality re-
duction techniques are desirable. This points to Random Projection (RP), which
is a dimensionality reduction method to reduce the dimensionality of data from
very high to high [1]. The guarantees given by Random Projection are based
on the JL lemma [9], which is also used to determine a suitable number of low
dimensions where the projection does not make an error greater than ε.

In this paper we provide a comprehensive study on RP in non-stationary
environments by comparing classifier performance on projected and original data
streams, additionally concept drift (CD) is taken into account. Finally, we review
the Johnson Lindenstrauß lemma in the presence of not knowing the length n
of a data stream.
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2 Related Work

In stationary environments as well as on streaming data, dimensionality reduc-
tion is a topic of interest, which allows data visualization and reduces the com-
plexity of algorithms. Especially in streaming environments this is important
because of the limited amount of time to predict label y for an incoming data
point x [2].

Some dimensionality reduction algorithms have been adapted to work with
streaming data. In [7] an online PCA for evolving data streams has been pub-
lished, which only keeps track of a subspace of small dimensions that capture
most of the variance in the data.

Also, Random Projection has already been applied in the fields of non-
stationary data, but without theoretical foundation or analysis. It was also
not analyzed or proven for non-stationary environments w.r.t. JL lemma. A
stream clustering algorithm called streamingRPHas, which uses RP and locality-
sensitivity hashing was published in [5]. Another work uses a Hoeffding Tree
ensemble to classify streaming data, on a lower dimensional space, obtained by
RP [12]. Both approaches use RP in streaming context without taking the effect
of CD on RP into account, which is a major challenge in supervised streaming
analysis.

So far a comprehensive study on RP and the envolved particularities of
streaming data is missing, addressed in this experimental study.

3 Preliminaries

3.1 Random Projection

Consider a data set X ∈ Rn×d with datapoints x in a d-dimensional space. The
data is projected to a lower dimensional space k � d by a function

π(X) = R×X (1)

via a random matrix R ∈ Rk×d. The distortion introduced by a random projec-
tion π is asserted by the fact that π defines an ε-embedding with high probability
defined by JL:

(1− ε)‖u− v‖2 < ‖π(u)− π(v)‖2 < (1 + ε)‖u− v‖2 (2)

where u and v are rows taken from data with n samples and d dimensions [1].
The parameter k is determined by JL lemma

k >=
4 log n

(ε2/2− ε3/3)
(3)

with an error less than ε [1]. There exist different approaches for generating
a sparse random projection matrix R. One approach creates R by drawing
samples from N (0, 1) and is called Gaussian RP (RP-G). The other approaches
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create R with entries ri,j where i denotes the i-th row and j the j-th column of
R, mainly differing in underlying density distribution:

ri,j =
√
s


−1 with probability 1

2s

0 with probability 1− 1
s

+1 with probability 1
2s

(4)

In [1] it is recommended to use a density of s = 3. In [10] it is recommended to
use s =

√
d instead, because this speeds up the computation by having a more

sparse matrix R. The first method is often referred to as sparse RP (RP-S) while
the latter is called very sparse RP (RP-VS). Calculation and usage of R costs
O(dkn) and O(ckn) when X is sparse, having c non-zero values per column [4].

3.2 Stream Analysis

Many preprocessing algorithms can not be applied to streaming data, because
there are some particularities [2] when analyzing data in non-stationary envi-
ronments. Main challenges are (1) inspection at a time, (2) time and memory
constraints, (3) dynamics of the data stream in particular CD, (4) CD detectors
are very slow in high dimensions. Some algorithms have been adapted to work
with streaming data with a comprehensive review in [2]. In particular, statistics
cannot be calculated over the whole data set X = {x1,x2, ...,xt} because the
data become available once at a time, asking for a flexible model. Thus, when
applying RP we will project one data point xt at time t by our initially created
projection matrix R to provide the projected data set to an online learning al-
gorithm. Another problem in non-stationary environments is CD which means
that joint distributions of a set of samples X and corresponding labels y between
two points change in time:

∃X : p(X,y)t 6= p(X,y)t−1 (5)

The term virtual drift refers to a change in distribution p(X) for two points
in time. Furthermore, we can rewrite Eq. (5) to

∃X : p(X)tp(y | X)t = p(X)t−1p(y | X)t−1 (6)

For a comprehensive study of various CD types see [6].
For this case online classification algorithms use statistical tests to detect

CD. These tests are adapted and used as so-called CD detectors (e.g. Adaptive
Windowing [3] and Kolmogorov-Smirnov Windowing [13]).

4 Random Projection in non-stationary environments

Assume we have a stream with a fixed number of dimensions, which will not
change over time, we can still use Eq. (1).

Due to the fact, that we depend on a fast projection in non-stationary set-
tings, the very sparse approach of [10] seems to be most suitable. The matrix
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creation using RP-VS costs O(ck) with c nonzero entries per column and can be
done in advance. The JL lemma shows, that k does not depend on d, instead
k depends on number of instances n [9], which can be addressed by a window
technique.

Determining a suitable number of dimensions for RP is a problem in the
field of streaming data. When the size of the whole data set n is known, we can
calculate a suitable number of dimensions by Eq. (3). However, a stream has
potential infinite length and unknown fixed n, hence a window of |W| samples
can be used, with k as defined by JL lemma. The window size of HT [3] and
SAM-KNN [11] (both without RP) is often chosen around 1,000. Hence, we use
a sliding window W of size 1,000 over a data stream and assume that we are
learning and predicting a single datapoint at every timestep t. Now we only need
to preserve the distances of 1,000 datapoints, because we are only calculating
distances on W instead of X. To find a suitable number of dimensions k by Eq.
(3) we have to choose a value for the introduced distortion ε. A good choice here
is ε = 0.2 [4]. This leads us to a bound of kW = 1594 for a fixed length window
|W| = 1, 000. E.g. at the beginning of a stream, the window is not completely
filled, however this is not a problem, because having n < |W| samples leads to
k ≤ kW .

5 Experiments

As benchmark classifiers we use Adaptive Robust Soft Learning Vector Quanti-
zation (ARSLVQ), which is a version of RSLVQ optimized for handling evolv-
ing data streams proposed in [8], SAM-KNN [11] and Hoeffding Adaptive Tree
(HAT) [3] as state-of-the-art streaming classifiers1.

In our first experiment we want to determine, which RP technique is more
suitable for streaming data. Based on the theory, RP-VS should be the fastest
method [10], but we cross check by the accuracy of our classifier, to analyze
classification performance on the separate projections. In this setting we are
projecting 10,000 dimensions to kW dimensions. Timed in seconds, RP-S took
82.67± 0.69, RP-VS 5.06± 0.01 and RP-G 36.27± 1.06, thus RP-VS performs
best, as we have already expected by one magnitude. Also, an NN classifier
achieved an accuracy ∼ 100 % for each projection on 10,000 Gaussian samples.

In the next step we want to show whether it is preferable for stream classi-
fiers to use the projected instead of original data, by comparing the runtime of
classifying the high dimensional Gaussian data vs. the lower dimensional data
provided by an RP algorithm. We are including the projection time into the
runtime.

As shown in Table 1 the runtime of all classifiers has improved by operating on
the projected space over predicting the original 10,000 dimensional data without
suffering accuracy.

In our next experiment we are using common data stream generators and real
data to explore how RP can be used on data containing drift and being not i.i.d.

1Experiments implemented in scikit-multiflow https://scikit-multiflow.github.io/
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Classifier Original RP-S RP-VS RP-G

RSLVQADA 251.49 ± 0.14 210.25 ± 0.50 129.88 ± 0.69 244.54 ± 0.29
SAM-KNN 7313.82 ± 22.99 1106. ± 45.46 1219.61 ± 14.86 1205.40 ± 218.75

HAT 8872.95 ± 20.82 3004.79 ± 12.01 2890.46 ± 4.89 3445.05 ± 2.05

Table 1: Runtime comparison for the classifiers and RP methods between the
original data and the projected data. Best performance marked bold.

In this scenario we will only use GP-VS [10] on 50,000 samples. Commonly used
stream generators do not contain high dimensional data. Thus, we are enriching
every stream generator with random features until it has 10,000 dimensions, and
reducing the dimensions to kW via RP. We used the STAGGER and the SEA
generator [6]. When using gradual drifts, the gradual drift will take place at
iteration 25,000 by a width of 10,000 indicated by (.)G. Abrupt drift will also
take place at sample 25,000 indicated by (.)A. Reuters dataset2 is projected
from original 4,773 features to kW . Abrupt drift is introduced at sample 1,237,
last sample is 2,445.

Algorithm RSLVQADA RSLVQADA SAM-KNN SAM-KNN HAT HAT
Dataspace Original Projected Original Projected Original Projected

STAGGERG 62.22 ± 2.29 64.26 ± 3.42 38.94±11.24 38.97±11.05 97.61 ± 4.77 67.90 ± 3.17
STAGGERA 62.98 ± 3.14 61.51 ± 3.99 38.74±11.11 38.84±11.20 41.32±16.21 68.39 ± 4.05

SEAG 78.97 ± 4.16 78.12 ± 5.79 25.16 ± 1.45 25.29 ± 1.45 62.14 ± 1.31 74.41 ± 1.64
SEAA 76.35 ± 4.20 70.20 ± 5.76 39.76 ± 1.70 39.63 ± 1.80 52.36 ± 0.80 68.53 ± 4.40
Reuters 99.64 ± 0.00 99.47 ± 0.00 99.51 ± 0.00 99.47 ± 0.00 oom 85.03 ± 0.0

STAGGERG 114 ± 0 105 ± 1 5273 ± 8219 1320 ± 1565 7798 ± 2716 1754 ± 400
STAGGERA 115 ± 0 108 ± 1 6198±10125 1489 ± 1885 9859 ± 699 1102 ± 240

SEAG 114 ± 0 104 ± 1 12809±2439 3215 ± 1373 6747 ± 8 1562 ± 30
SEAA 114 ± 0 106 ± 1 7639 ± 2410 604 ± 31 6519 ± 18 1725 ± 353
Reuters 3.69 ± 0.01 1.22 ± 0.03 156.28±7.05 33.34 ± 0.13 oom 71.83 ± 0.17

Table 2: Comparison of concept drift streams w.r.t. accuracy and runtime

The upper four rows of Table 2 show the results w.r.t. accuracy. We can see,
that for RSLVQ and SAM-KNN there is no relevant difference in the accuracy
comparing high vs low dimensional streams. The reason that some algorithms
perform poor even in the high dimensional space is, that every stream has been
enriched with random noise to get 10,000 features. HAT often performs better
in the projected space, but on STAGGERG some information is lost. However,
it does not seem to make a difference in general if we are handling CD streams
in projected or in original space as the other results of Table 2 show. The
runtime complexity is however strongly effected. HAT could not be evaluated
on original Reuters due to memory issues, using 32 GB (out of memory - oom).
The lower four rows of Table 2 show runtime results. We see, that the runtime on
the projected space is better on every stream, independent of algorithm usage.
However, the prototype classifier only saves a small amount of runtime, thus the
trade-off may not be desirable depending on the stream, this is the case because
RSLVQ lost some of its accuracy performance on SEAA. The runtime savings
for the NN approach and the tree-based approach is ∼ 75 % which seems to be
very good, expect for HAT on STAGGERG generator because of the enormous
trade-off in accuracy.

2https://github.com/ChristophRaab/stvm, we are using ’org vs people’.
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6 Outlook & Conclusion

In future work we want to consider the case, that features of a data stream
will be removed or new features are added, e.g. because a sensor gets replaced.
Hence, the random matrix R needs to be adapted. More recent stream classi-
fiers use advanced statistical CDD which are expected to perform better in low
dimensional space. In summary our experiments have shown, that using RP in
non-stationary environments can save a lot of time on some classifiers. While
the RSLVQADA shows a moderate improvement, the effect is strong in case of
other state-of-the art methods like SAM-KNN and HAT. Our results show, that
applying RP has no negative impact on the accuracy. Thus, the usage of RP on
streaming data leads to enormous runtime savings and the error is bounded on
window-based classifiers.
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