
Visualization of the Feature Space of Neural
Networks

Carlos M. Aláız, Ángela Fernández and José R. Dorronsoro ∗

Dpto. de Ingenieŕıa Informática & Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid - Spain

Abstract. Visualization of a learning machine can be crucial to un-
derstand its behaviour, specially in the case of (deep) neural networks,
since they are quite difficult to interpret. An approach for visualizing the
feature space of a neural network is presented, trying to answer to the
question “what representation of the data is the network using to make
its decision?” The proposed method gives a representation of the space
where the network is tackling the problem, reducing it while respecting
the linearity of the model. As shown experimentally, this technique allows
to study the evolution of the model with respect to the training epochs,
to have a representation of the data similar to the one used by the neural
network, and even to detect groups of patterns that behave differently.

1 Introduction

Given the current interest in the interpretability of Machine Learning models,
visualization has become an even more crucial issue. In particular, there is an
interest on visualizing machine learning models, either for interpreting them
or just for model inspection. In that case the visualization has a supervised
component, since the trained model has information about the target.

This work proposes an approach to understand how a Neural Network (NN)
is transforming the data, in order to analyse its behaviour and its structure,
and hopefully to use this knowledge to improve it. This method covers any
network, independently of the complexity of their architectures. The main idea
is to visualize the feature transformation that the model applies over the data,
representing the points in the embedded space where the decision is taken. This
can be useful for understanding the structure of the final model, but also to see
its evolution along the different training epochs.

The paper is organized as follows: Sec. 2 briefly reviews the state of the art in
NN visualization, whereas the proposed method is explained in Sec. 3. Section 4
includes numerical experiments, and some conclusions are given in Sec. 5.

2 Neural Networks and Visualization

Artificial NNs are classical non-linear learning machines that have become state-
of-the-art techniques for solving many real problems. Their basic processing

∗With partial support from the European Regional Development Fund and from the Spanish
Ministry of Economy, Industry, and Competitiveness, project TIN2016-76406-P (AEI/FEDER,
UE). Work supported also by UAM–ADIC Chair for Data Science and Machine Learning. We
also acknowledge the use of the facilities of Centro de Computación Cient́ıfica (CCC) at UAM.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

169

(a) moons: Orig. (b) moons: PCA. (c) moons: Pred. (d) roll: Orig. (e) roll: PCA.

Fig. 1: Original moons and roll datasets, PCA projections of the transformed
feature spaces and predicted output over the original space (only for moons).

units are the neurons, that compute their outputs as weighted linear combina-
tions of the inputs plus an activation function. In Feed-Forward Neural Networks
(FFNNs), the neurons are organised in layers, where the output of each layer
is used as input of the next one. Any NN in which the last layer is composed
by a single logistic (for classification) or linear (for regression) unit can be split
into a transformation of the feature space ϕ : Rd → RD, that take places in the
hidden layers, and a linear classification or regression model, {w, b} ∈

{
RD,R

}
,

performed by the output unit.
Regarding visualization methods that represent how a NN sees the data, the

most interesting works are naturally applied to images, where there are mainly
two approaches. The first one is to find an input image that gives more evidence
for/against one particular class, e.g. in [1] two tools for visualizing convolutional
NNs are applied to images and videos, based on making a regularized optimiza-
tion of the activation patterns in the input space; in [2] the idea of plotting the
activations to check the structures that excite the map also appears. The second
one is to visualize how the network answers when it receives an image, exploring
a particular classification made by the network. In this case it is particularly
relevant the work in [3], where difference analysis is used to highlight the parts
of the image that have more evidence for or against one class. Finally, a recent
approach [4] shares the goal of this work, looking for a visualization of the data
space that provides insights into the NN, although using a non-linear embedding.

It should be noted that a trivial representation of any machine learning model
can be done when the initial dimension is small enough (d < 3). In that case
the data can be directly plotted in the original space, and the prediction can be
computed over a grid, as shown in Fig. 1, where the original two-dimensional
dataset of Fig. 1a is depicted jointly with the surface of the prediction of the
model in Fig. 1c. The main drawback of this approach is that it can only be
applied to problems with one or two features.

3 Visualization of the Feature Space

Unlike the approaches described above, the method proposed next provides a
visualization of the data after the transformation that takes place inside the

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

170

NN, but preserving this implicit embedding. Let xi ∈ Rd, i = 1, . . . , N , be the
input patterns and X ∈ RN×d the data matrix. Considering the usual NNs
composed by a feature transformation plus a linear model, once the initial data
matrix X ∈ RN×d has been transformed into Φ ∈ RN×D (where the i-th row of
Φ corresponds to the i-th transformed pattern, φi = ϕ (xi)), the visualization
reduces to represent a linear model {w, b} with the corresponding D-dimensional
data Φ. Although this visualization is trivial if D ≤ 3, in the general case
some dimensionality reduction should be applied, ideally maintaining the original
structure to keep the linear relationship between the input and the prediction.

Therefore, the objective is to reduce the extended feature space from D
dimensions to only two/three components that can be accurately depicted. Since
the visualization method should be somehow compatible with the NN, and the
prediction of the NN is linear in RD, the transformation proposed here will also
be linear. Hence, the dimensionality reduction will be defined by a projection
matrix P ∈ Rd′×D (typically d′ = 2 or 3). Moreover, and in order not to maintain
redundant information, the rows of P will be assumed to be orthogonal, and with
norm equal to one to preserve the original metric as much as possible.

The standard approaches in such a context do not consider in any way the
linear model {w, b} on top of the NN. For example, although Principal Compo-
nent Analysis (PCA; [5]) is designed to preserve as much variance of the data as
possible, the prediction of the NN will not be linear in the PCA-reduced space.
Hence, it will not be possible to depict the prediction in the reduced space using
a grid since each point of the grid corresponds to a subspace of points of the
original space, and each point of that subspace can have a different prediction of
the model. This effect is illustrated in Figs. 1b and 1e, where the feature space
is reduced with PCA for the classification and regression datasets of Figs. 1a
and 1d (described in detail in Sec. 4). The target, represented by the colours of
the points, is not linear despite the high precision of the NNs; this means that,
although both NNs have successfully projected the data so that the problem is
(almost) linear, the visualization using PCA does not allow to appreciate it.

A dimensionality reduction technique that respects the linearity of the predic-
tion is thus needed. Such a technique is defined thanks to the next proposition.

Proposition 1. Let P ∈ Rd′×D be a projection matrix from RD to Rd′
(typically

d′ � D) and let {w, b} ∈
{
RD,R

}
be a linear model on RD. The projection P

preserves the linearity of the linear model if and only if w ∈ span (p1, . . . ,pd′),
with pi ∈ RD the i-th row of P.

Proof. The projection P preserves the linearity of a linear model if there exists
an equivalent linear model in the reduced space such that the prediction of the
original model for any φ ∈ RD is equal to the prediction of the equivalent model
for Pφ ∈ Rd′

, i.e., if there exists a hyper-plane w′ ∈ Rd′
such that ∀φ ∈ RD,

φᵀw = (Pφ)
ᵀ

w′ = φᵀPᵀw′. Since this has to be satisfied for any vector
φ ∈ RD, in particular it has to be satisfied for the D vectors of the canonical
basis of RD, eᵀ

i w = eᵀ
i Pᵀw′. Stacking all these equalities together leads to the

matrix equality Iw = IPᵀw′, with I ∈ RD×D the identity matrix. Therefore,
w = Pᵀw′ =

∑
w′ipi, and hence w ∈ span (p1, . . . ,pd′).

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

171

Algorithm 1 Visualization of the Feature Space of a Neural Network.

Require: Feature Mapping ϕ : Rd → RD, Output Weights {w, b} ∈
{
RD,R

}
, Original Data

X ∈ RN×d

Ensure: Embedded Data Ψ ∈ RN×d′

Φ← ϕ (X) . Transformed data.
p1 ← w/‖w‖ . First direction of projection.
ψ1 ← Φp1 . First component of the projected data.
Φc ← Φ−ψ1pᵀ

1 . Removal of the projected information.
for i = 1, . . . , d′ − 1 do . PCA over Φc to obtain Ψc.

uc,i ← EigVec(Φᵀ
cΦc, i) . Eigenvector with i-th largest eigenvalue.

ψi+1 ← Φuc,i . Component i + 1 of the projected data.
end for
return Ψ

Given Prop. 1 and up to rotations, the first component on the reduced space
should be the projection over the direction of w. Hence, the first row of P is
defined as p1 = w

‖w‖ , and the first dimension of the reduced space is ψ1 = Φp1.

Since the linearity of the prediction is already guaranteed thanks to ψ1, the other
components ψ2, . . . ,ψd′ can be designed to maximize the variance retained.
Hence, they have to be orthogonal to p1 and they have to maximize the variance,
and this is precisely what PCA does when applied to Φc = Φ−ψ1p

ᵀ
1 (the data

once p1 has been projected out), as stated in the next proposition.

Proposition 2. Let Φ ∈ RN×D be a data matrix, and let p1 ∈ RD be a pro-
jection direction with ‖p1‖ = 1. Then the projection Pc corresponding to PCA
applied over Φc = Φ− ψ1p

ᵀ
1 , with ψ1 = Φp1, is a linear projection orthogonal

to p1 that maximizes the variance retained when applied to Φ.

Proof. Since Φcp1 = Φp1 − ψ1p
ᵀ
1p1 = ψ1 − ψ1 ‖p1‖2 = 0, then p1 is an

eigenvector with zero eigenvalue of the covariance matrix Φᵀ
cΦc, and hence this

component will not be selected by PCA, and Pc is orthogonal to p1. In order to
see that it maximizes the variance, let P′c be a different projection orthogonal to
p1, i.e., P′cp1 = 0. Since Φ and Φc only differ in a component on the direction of
p1, Φ (P′c)

ᵀ
= Φc (P′c)

ᵀ
and ΦPᵀ

c = ΦcP
ᵀ
c . If the variance Var

[
Φ (P′c)

ᵀ]
were

larger than Var [ΦPᵀ
c], then Var

[
Φc (P′c)

ᵀ]
would be larger than Var [ΦcP

ᵀ
c],

contradicting that PCA maximizes the variance.

According to Props. 1 and 2, a projection P ∈ Rd′×D compatible with
{w, b} ∈

{
RD,R

}
and that maximizes the retained variance is given by Pᵀ =

(w/ ‖w‖ ,uc,1,uc,2, . . . ,uc,d′−1), with uc,i the eigenvector with the i-th largest
eigenvalue of ΦcΦ

ᵀ
c and Φc = Φ −Φp1p

ᵀ
1 . The overall proposed visualization

procedure, for a NN with a single logistic/linear output unit, is shown in Alg. 1.

4 Experiments

This section shows how the proposed method works in two synthetic datasets
and a real-world problem. The visualization method is implemented in Python,
and the Neural Networks are built using Keras.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

172

(a) moons: Untrained. (b) moons: 30 epochs. (c) moons: 60 epochs. (d) moons: 90 epochs.

(e) roll: Untrained. (f) roll: 20 epochs. (g) roll: 40 epochs. (h) roll: 60 epochs.

Fig. 2: Evolution of the NN over the moons and roll datasets.

The first dataset, moons (Fig 1a), is a classification problem generated using
the function make_moons of Scikit-learn with 250 points per class and a noise
level σ = 10−1. Figure 2 (top) shows the evolution of a FFNN with two hidden
layers of 10 units each and ReLU activations. The colours of the points represent
the real class, the background colour the prediction (which only depends on the
x-axis) and the line the separating hyper-plane. These plots show how the NN
iteratively untangles the problem until it is (almost) linearly separable.

The second example, roll (Fig. 1d), is generated with make_swiss_roll of
Scikit-learn, with 250 patterns per class and without noise. As before, Fig. 2
(bottom) shows the evolution of a FFNN with the same architecture as above.
Ideally, the colours of the background and the points should be the same. Again
the NN unrolls the dataset gradually until arriving to an almost linear problem.

The last problem (mnist) is the MNIST dataset provided by Keras. Two
classes are selected, corresponding to digits four and nine, and 500 patterns
of each class are sampled. Three images of digit one are also included in the
class of digit nine to study where the visualization method locates these outliers.
The NN used is the Convolutional NN (CNN) described in the documentation
of Keras for this dataset, and it is trained during 10 epochs. The resultant
visualization is depicted in Fig. 3, together with the images corresponding to
the patterns on the border of the cluster of each class. It is easy to see that the
different regions of the space correspond to different ways of writing each digit.
Moreover, the three outliers appear concentrated in the lower part of the cluster
of digit nine (i.e., the second dimension is providing information in this sense).
There is also a misclassified point, a four that clearly resembles a nine.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

173

https://keras.io/examples/mnist_cnn
https://keras.io/examples/mnist_cnn

Fig. 3: Visualization of the CNN for mnist dataset in two and three dimensions.

5 Conclusions

Visualization is receiving great attention within the ongoing efforts to interpret
Machine Learning models. In the case of Neural Networks (NNs), most work
focuses on reconstructing the samples that most excite the network. A different
approach has been proposed here, depicting the patterns after the transformation
that takes place in the NN, in a way compatible with the linear model on top
of the NN. This visualization requires reducing the dimensionality from D (the
number of units in the last hidden layer) to two/three so that it can be plotted.
This work has proved that the reduction compatible with the linear model that
more variance retains is formed by a projection over the hyper-plane that defines
the linear model plus a PCA projection over the orthogonal space. As shown
experimentally, this approach can be useful for studying the evolution of the
model with respect to the training epochs and to have a representation of the
data compatible with the NN. It can also be applied to detect outliers, or to
cluster the patterns according to their behaviour with respect to the NN.

As further work, this kind of approach can be applied to other Machine Learn-
ing models that include, either explicit or implicitly, a feature transformation
plus a linear model.

References

[1] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks
through deep visualization. In Deep Learning Workshop, ICML, 2015.

[2] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.

[3] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural network
decisions: Prediction difference analysis. In ICLR Conference Track Proceedings, 2017.

[4] A. Schulz, F. Hinder, and B. Hammer. Deepview: Visualizing the behavior of deep neural
networks in a part of the data space. arXiv:1909.09154, 2019.

[5] J. P. Cunningham and Z. Ghahramani. Linear dimensionality reduction: Survey, insights,
and generalizations. The Journal of Machine Learning Research, 16(1):2859–2900, 2015.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

174

	Introduction
	Neural Networks and Visualization
	Visualization of the Feature Space
	Experiments
	Conclusions

