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Abstract. Metric learning schemes can greatly enhance distance-based
classifiers, and provide additional model functionality such as interpretabil-
ity in terms of feature relevance weights. In particular for high dimensional
data, it is desirable to obtain sparse feature relevance weights for higher
efficiency and interpretability. In this contribution, a new feature selection
scheme is proposed for prototype-based classification models with adaptive
metric learning. More precisely, we integrate the group lasso penalty and
a subsequent optimization of sparsity while leaving the mapping invariant.
We evaluate the performance on a variety of benchmarks.

1 Introduction

Recently, prototype-based models have gained increasing attention due to their
ability for few shot and life-long learning, on the one hand [1, 2, 3], and their
intuitive representation of models in terms of typical representatives, on the
other hand [4, 5]. Applications range from classification of hyperspectral data
[6] and astrophysics [7], over intelligent tutoring systems [8], up to applications
in bioinformatics [9] and medicine [10]. In addition, powerful algorithmic models
for learning prototype-based models exist, including not only efficient learning
schemes and their mathematical substantiation [11], but also extensions which
enhance models by additional functionality or properties such as the possibility
of model visualization [12], data privacy [13], or reject options [14].

In this contribution, we will focus on learning vector quantization (LVQ)
as particularly robust training method, and its extensions to metric learning
schemes as proposed in the work [11]. Metric learning schemes, which are based
on a local or global adaptive quadratic form, lead to an enhanced model inter-
pretability, by suggesting a feature relevance weighting scheme in terms of the
diagonal entries of the matrix associated to the metric. Yet, in particular for
high dimensional data, relevance weightings of the features are no longer easily
interpretable nor efficient due to the sheer number of the involved features. Fur-
ther, it has been pointed out in the work [15] that an increasing risk of spurious
relevance terms is induced by possibly high feature correlations. In this work,
we aim for efficient schemes which extend LVQ models to sparse models, which
are based on as few input features as possible. Such models have the potential of
increased interpretability, since a human observer needs to inspect only a subset
of relevant features, as is also common in popular black box model interpreta-
tion methods [16]. Additionally, a restriction to a subset of features increases
model efficiency and its suitability for edge computing, since only a small set
of features needs to be measured and processed. It is well known that popular
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matrix learning approaches are sparse in the sense that they tend to converge
to low rank matrices, as shown e.g. in the work [17]. Yet, low rank matrices can
still make use of number of features, unless the relevant directions are aligned
with the coordinate axes of the original data model. One first approach tackling
feature sparsity is already done in [18] using a differentiable approximation of
the L1-norm but getting intricate in the case of relevance matrices.

In this contribution, we will propose a novel model which enhances LVQ
schemes to aim for sparse feature relevance vectors also for local metric learning.
We will achieve this goal by a combination of two modeling steps: first, we
enhance the cost function of LVQ schemes by an objective, which is based on
group-lasso [19]. We will show that this technique already improves sparseness,
but it does not enable a sparseness which is comparable to alternatives such
as random forests [20]. Based on the insights as obtained in the work [15], we
add a posterior optimization step, which can be solved approximately based on
orthogonal matching pursuit (OMP) [21].

2 Learning vector quantization

LVQ models offer a classification of Rd into K classes. The model is parame-
terized by w labeled prototypes (wj , c(wj)) ∈ R

d ×{1, . . . , K}, j ∈ {1, . . . , w},
which induce a winner takes all classification of a new data point x 7→ c(x) :=
c(wl) with l = argminj∈{1, ..., w} d(wj ,x) where d(·, ·) is an appropriate distance

measure. Training in so-called generalized learning vector quantization (GLVQ)
constitutes a stochastic gradient descent on the costs

EGLVQ =
∑

i

Φ

(

d+(xi)− d−(xi)

d+(xi) + d−(xi)

)

(1)

where d(x) is the squared Euclidean distance, Φ a monotonic function such as
the logistic one or the identity, and the indices + and − refer to the closest
prototype with correct or incorrect label, respectively [22].

In metric learning for LVQ, the squared Euclidean distance is substituted
by a parameterized form, and metric parameters are adapted together with
the prototype locations. More specifically, generalized matrix LVQ (GMLVQ)
uses a positive semi-definite matrix Λ and the distance measure d(x,wj) =

(x−wj)
TΛ(x−wj). Local GMLVQ uses a different matrix Λj for each proto-

type wj such that d(x,wj) = (x−wj)
T
Λj(x−wj). Positive semi-definiteness

of Λ and Λj is guaranteed by the representations Λ = ΩTΩ and Λj = Ωj
TΩj ,

respectively [11]. Instead of using a squared matrix of size d × d, a rectangle
matrix can be chosen Ω,Ωj ∈ R

m×d [12]. This reduces the complexity of the
model. Note that a quadratic form corresponds to a linear data transformation
d(x,wj) = (Ω(x−wj))

2; we will later use this representation in Section 5.

3 Group lasso

Group lasso [23] aims for a selection of features which come in J predefined
groups of sizes pj, j ∈ {1, . . . , J}, whereby either all or none of the features of a
group can be chosen. For a linear model, group lasso enhances the squared error
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by a penalty: 1
2

∥

∥

∥
y −

∑J

j=1 Xjβj

∥

∥

∥

2

+S·
∑J

j=1 ‖βj‖Kj
where ‖z‖

Kj
= (zTKjz)

0.5

and Kj are positive definite matrices, often Kj = pjI where pj is the size of the
jth group, and the usual design matrix X and covariate vector β is replaced by
a collection Xj and βj for each group. Defining X = (X1,X2, . . . , XJ) and

β = (βT
1 ,β

T
2 , . . . , β

T
J )

T
yields the sum squared error (SSE), ‖y −Xβ‖

2
, which

we will substitute by GLVQ cost later on. Since pj = d will be constant we
choose Kj as identity matrix, which yields the simplification of the regularizer

S ·
∑J

j=1 ‖βj‖ where the Euclidean norm ‖z‖ = (zT z)0.5 is used.

4 Orthogonal Matching Pursuit

Matching pursuit is an approximation algorithm which enables an approxima-
tion of a signal f in terms of a sparse linear combination of elements g from a

given dictionary: f ≈ f̂N =
∑N

n=1 angn(t) where gn is the nth column (element)
of the dictionary and an the scaling factor, and the coefficient vector a should
be sparse. Solving this problem exactly is NP-hard. Matching pursuit consti-
tutes a greedy approximation where dictionary elements are iteratively chosen
to minimize the reconstruction error by adding a single element and suitable
scaling. Orthogonal matching pursuit (OMP) extends this scheme such that
the orthogonal projection of the signal onto the subspace spanned by the set of
already selected base elements is calculated [21].

5 Sparse LGMLVQ

We are interested in sparse models for matrix learning. A local adaptive matrix
Λk does not use feature j iff the column j of the linear transformation Ωk equals
a vector 0, and Λk = Ωk

TΩk. Hence we can form groups of elements (Ω•)•j for
fixed j, and we can penalize such groups by extending the LGMLVQ-costs

ESLGMLVQ = ELGMLVQ + S ·
d
∑

j=1

(

K
∑

k=1

m
∑

i=1

|(Ωk)ij |
2

)0.5

(2)

The gradients for w are not affected by the penalization term; the gradients for
the projection matrices become ∇Ωj

ESLGMLVQ = ∇Ωj
ELGMLVQ + S with

Shl =











0 for (Ωj)hl = 0

S ·
(Ωj)hl

(

∑K

k=1

∑m

i=1 |(Ωk)il|
2
)0.5 otherwise (3)

This extension shrinks the column values of Ωj close to zero.
In practice, however, we do not necessarily observe values exactly 0, and the

choice of a suitable cutoff-threshold might be problematic. Therefore, we add
an efficient heuristic to choose those columns which contribute most and delete
those which are close to 0. The motivation is based on the observation that the
model is not changed if the linear projection induced by Ω is not altered on the
data. The work [15] provides an exact characterization of the null space of this
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mapping. Here, we aim for a substitution of Ω by a sparse matrix Ω′ which leaves
the data projection invariant, i.e. Ω′(xi−wj) ≈ Ω(xi−wj) ∀xi, j ∈ {1, . . . , w}
where the sparsity s is measured by the number of columns of only zeros

s = 1−
1

d
‖s‖0 , (s)l =

m
∑

i=1

|(Ω)il| ∀l ∈ {1, . . . , d}.

Let (ω1
T , . . . , ωm

T ) = Ω the m rows of the projection matrix. Then, we are

seeking for a sparse ω′
i with ω′T

i X ≈ ωT
i X where X = (x1 − w1, . . . , xm −

w1, . . . , x1−ww, . . . , xm−ww) is the matrix containing all pairwise differences
of all samples and prototypes. We can use OMP to approximate the problem

ωT
i X =: y ≈

∑N

n=1 an(X
′)j where (X ′)j is the jth column of the data matrix

X, which is normalized as required by OMP, and the (sparse) coefficients an
are determined by OMP; ω′

i results from the normalization factors. For local
matrices, we can concatenate all local matrices, and apply the same procedure.

6 Experiments

We evaluate the method based on the following three data sets:

• FRI [24] includes an artificially generated data set of 3000 points. Linearly
separable data are enriched by ten redundant features (linear combinations
of the first three) and 37 uniformly distributed irrelevant features.

• Human Activity Recognition (HAR) [25] data set consists of time and fre-
quency domain variables. Activities of daily living (walking, walking up-
stairs, walking downstairs, sitting, standing, laying) were captured by a
smartphone on the waist. It consists of 5744 samples with 561 dimensions.

• Gisette [26] is a high dimensional data set generated for a feature selection
challenge. The classification task is to distinguish between the 4 and 9. It
consists of 7000 samples with 5000 dimensional feature vectors.

All data sets are balanced. We use feature-wise z-transformation and evaluate
the results by their accuracy in a five-fold cross-validation. We compare the fol-
lowing techniques (based on scikit-learn [27] and the LVQ Matlab Toolbox [12]):

• Logistic regression (LR) with lasso penalty with increasing weight of the
L1-penalty;

• Random forests (RF) where an increasing number of features is dropped
according to the relevance given by random forests;

• LGMLVQ with low-rank matrices; this is obtained by applying PCA first
and projecting back to full prototypes;

• LGMLVQ (RF) where LGMLVQ is trained on sparse features as deter-
mined by random forests and different thresholds for features selection;

• OMP for sparse LGMLVQ with group lasso penalty, whereby the penalty
is increased with S ∈ [0, 10] and low-rank matrices as for LGMLVQ are
used, with subsequent OMP for feature selection and short retraining.
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Fig. 1: Sparsity vs. accuracy of all three data sets and a fix projection dimension
m = 5

Fig. 1 plots accuracy versus sparsity of each method and each data set. In
Table 1 accuracies and standard deviations are given for five sparsity values.
Some methods do not enable a high degree of sparsity, indicated by an empty
entry. Interestingly, for all data sets the accuracy does stay the same up to
sparsity values up to 0.9. For random forests, there are some cases where a
higher sparsity improves the performance of the model. In all cases extremely
sparse models lead to a high accuracy loss. At this point strongly relevant
features are deleted and a good classification is not possible anymore.

From these results, we can conclude that LGMLQ alone does not enable
us to obtain sparse models by means of deleting features according to the rele-
vance weighting, but both, explicit sparsity terms or prior feature selection using
random forests enable us to obtain sparse models. Surprisingly, random forest
features yield a good accuracy only for a sparse number of features for both,
random forests itself as well as a subsequent use by LVQ models. OMP enables
a decent classification accuracy and reasonable sparsity, but in two cases it does
not enable an extreme sparsity of only 2% of used features. A linear classifier is
naturally restricted for nonlinear classification tasks such as HAR and Gisette.

Table 1: Mean and standard deviation in parentheses of the accuracy for the
data sets out of a 5-fold cross validation and a fix projection dimension m = 5

data sparsity RF LR LGM LGM (RF) OMP

F
R
I

0.5 0.921 (0.0168) 0.997 (0.0035) 0.94 (0.1320) 0.822 (0.0238) 0.999 (0.0015)
0.75 0.947 (0.0045) 0.997 (0.0035) 0.84 (0.0763) 0.993 (0.0070) 0.999 (0.0009)
0.9 0.963 (0.0080) 0.997 (0.0035) 0.829 (0.0866) 1 (0 ) 0.987 (0.0241)
0.94 0.891 (0.0125) 0.875 (0.0024) 0.799 (0.0709) 0.923 (0.0079) 0.869 (0.0765)
0.98 0.677 (0.0065) 0.631 (0.0005) 0.698 (0.0195) 0.774 (0.0125) —

H
A
R

0.5 0.968 (0.0023) 0.97 (0.0025) 0.972 (0.0035) 0.843 (0.0116) 0.978 (0.0036)
0.75 0.969 (0.0021) 0.953 (0.0052) 0.959 (0.0026) 0.87 (0.0084) 0.974 (0.0025)
0.9 0.965 (0.0033) 0.906 (0.0081) 0.92 (0.0083) 0.875 (0.0034) 0.938 (0.0045)
0.94 0.959 (0.0020) 0.854 (0.0059) 0.88 (0.0108) 0.884 (0.0076) —
0.98 0.938 (0.0155) 0.594 (0.0311) 0.646 (0.0089) 0.856 (0.0331) —

G
i
s
e
t
t
e

0.5 0.957 (0.0052) 0.869 (0.0053) 0.981 (0.0037) 0.88 (0.0114) 0.953 (0.0086)
0.75 0.96 (0.0058) 0.869 (0.0053) 0.981 (0.0044) 0.905 (0.0140) 0.953 (0.0086)
0.9 0.963 (0.0083) 0.869 (0.0053) 0.974 (0.0066) 0.927 (0.0120) 0.953 (0.0086)
0.94 0.965 (0.0059) 0.869 (0.0053) 0.968 (0.0062) 0.936 (0.0130) 0.953 (0.0086)
0.98 0.959 (0.0058) 0.862 (0.0260) 0.954 (0.0072) 0.937 (0.0110) 0.953 (0.0086)
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7 Conclusions

We have introduced an approach to obtain sparse LGMLVQ models by inter-
preting the relevance matrix as a projection matrix and searching for sparse
approximations. In the results, we showed that it becomes possible to remove
more than 90% of the features this way without deteriorating performance. Such
sparse models are particularly interesting for its efficient realization in hardware,
on edge devices, or real-time classification models. Furthermore a smaller model
is easier to study and interpret.
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