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Abstract. We derived theoretical formulas for the variance of extreme
learning machine ensemble in a general case of a heteroskedastic noise.
They provide a decomposition of the variance, which helps in the un-
derstanding of how the different sources of randomness contribute. The
application of the proposed method to simulated datasets shows the effec-
tiveness of the newly introduced estimations in replicating the expected
variance behaviours.

1 Introduction

Model uncertainty quantification is important to provide assessment of the model
quality. In particular, it allows the development of active learning procedures
and is essential to derive confidence intervals. Moreover, uncertainty of the
regression estimate is necessary to build accurate prediction intervals.

Extreme Learning Machine (ELM) [1] is a single-layer feed-forward neural
network, for which the input weights and biases are randomly drawn. This
enables the optimisation of the output weights, with respect to the Lo criterion,
by solving N linear equations, where N denotes the number of neurons of the
hidden layer. From a statistical point of view, the inputs are projected in a
N —dimensional random feature space, where a Multivariate Linear Regression
(MLR) with a null intercept is performed.

Several methods were proposed to obtain confidence/prediction intervals with
ELM, such as Bayesian ELM [2], bootstrap-based ELM [3] and weighted Jack-
knife [4]. This research proposes a model variance estimation based on an an-
alytical computation within the frequentist framework, which avoids the use of
prior knowledge, resampling procedures, or hypothesis on data distribution. The
main formulas are derived in section 2 and estimators are proposed in section
3. Simulated experiments are conducted in section 4. Section 5 concludes the

paper.

2 Analytical developments

2.1 Extreme Learning Machine

Let the training set D = {(x;,%:) : x; € R%y; € R}, be a realization of
independent and identically distributed random variables {(X;,Y;)}" ;. Input
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weights w; € R? and biases b; € R are randomly drawn, independent and identi-
cally distributed. Then, we can compute the hidden matrix H € R"*¥ | defined
by (H)i; = g(xF'w; +b;), where g is any infinitely differentiable activation func-
tion. The output weights 5 € RV are related to the hidden matrix by HB =y,
where y = (y1,...,yn)T € R™. They are optimized regarding the Ly criterion
E = ||y — Hp||?, which is exactly the least squares (LS) procedure for a fixed
design matrix H [5]. If the matrix HT H is of full rank and then invertible, the
output weights are directly estimated by 8 = H'y, where HT = (HTH)"'HT.
With small datasets, the model can be retrained several times and averaged in
order to reduce the randomness induced by the input weight initialization.

2.2 Model variance for ELM

Assume that D is generated by y = f(x) 4+ &(x), where f is the true function we
want to approximate and (x) denotes an independent centered noise depending
on the input. At the training points we note f, respectively €, the vector defined
by (f); = f(x;), respectively (e); = e(x;), and X the covariance matrix of .

At a new point xo € R%, the prediction is given by f(xo) = th, where
hy € RY is the vector defined by (ho); = g(x} w; + b;). Note that f(x0) is a
random variable depending on €, but also on the stochastic quantities used in
H and hy. Let us denote X = (X1,...,X,)? and W the random vector of all
input weights and biases. Using the law of total conditional variance, one can
compute the variance of the model at xg, conditioned on the input data,

Var [f(x0)|X] —E [Var [f(x0)|W,X} |X} + Var {E {f(xo)|W,X] \x}
=E [h{ H'SH"ho|X] + Var [h§ H'f|X] .

The first term of the right-hand side (RHS) is the variance of the LS step av-
eraged on all the random feature spaces. In the MLR statistical framework,
assumptions on data generation force the model to be unbiased. Here, this is

not the case and the variation of E [ f(x0)[W, X} — which is equivalent to the
bias variation of the LS step — has to be considered and yields the second term.

2.3 Model variance for ELM ensemble

As mentioned before, the training could be done several times, yielding M mod-
els fm,m =1,...,M. Then, the final prediction f is the average of the M
predictions. An analogous direct and long calculation can be done for the vari-
ance of the mean predictor yielding the following three-terms formula,

Var [ f(x0)|x] - %]E (bl HTSH T ho|X]

M-1
M

where indices 1 and 2 are used to distinguish interaction between two different
models. The RHS first and third terms are the equation (1) divided by the

(2)

1
+ E [h({lﬂjzﬂfho,zlx} + = Var [0 H'f[X] |
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number of models. The bias variation of the LS step is reduced by a 1/M factor.
Although the average variance of the LS step represented by the RHS first term
seems to decrease by a 1/M factor, models are pairwise strongly dependent due
to the fact that the same training dataset is used to train all models, which
yields the RHS second term. Notice that if M = 1, formula (1) is recovered.

If the noise variance is assumed to be homoskedastic, we can write > = o21.
Then, the model variance becomes

Var [f(x0)|X} = OMEE [hd (HT H)~'ho|X]

(M -1o? @

M

Notice that if W and X are deterministic and M = 1, we recover the classical
MLR formula for the model variance at a prediction point, see [5].

1
+ [hoT,1H1TH2TTho,2|X} + i Var [hOTHTf\X} .

3 Model variance estimation for ELM ensemble

First, one want to estimate Var [hOTH tf | X], i.e. the variance induced by the
randomness of W knowing the true f at the training points. In particular, this
quantity is the same for the homoskedastic and heteroskedastic case and noise
is not involved in it. As f is not accessible, one can approximate it by the model
predictions at training points, f, defined by (f); = f(x;). Using the fact that
f= HHTy, one has for each model

Var [h] Hf|X] ~ Var [hOTHTf\s,X} = Var [h] H'y|e, X] = Var [f(x0)|s7x} .

This motivates the following estimator for Var [hf H'f | X],

1 &/, 1 & ’
&JQE(XO) YA Z (fm(xo)—MZfl(Xo)> :

3.1 Estimator for the homoskedastic case

Here, o2 is estimated by
1 M 1 n
22 _ 2
g2 ().
m=1 i=1

where 7, = y; — fm(xi) is the residual at the i*" training data for the m!*

model. Although this is the mean of all 02 MLR estimates, it is biased.
By approximating expectations by means in equation (3), the model variance
at a new point Xy can be estimated by

2 6-2 - T T 1 T T &?(XO)
0°(x0) = 775 > h§, (HEHp) 'hom +2 > hi  HiHTho, | + TR
m=1

m<l

where H,, and hg ,,, are the analogous quantity to H and hy for the m*" model.
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3.2 Estimator for the heteroskedastic case

For non-constant noise variance, the diagonal matrix X need to be estimated. In
MLR, this quantity is sometimes estimated by the diagonal matrix 3, defined by
(S)ii = /(1= (HyH})ii)?, where H,, is the fixed design matrix [5]. In our
case, each model provides an estimate 3, which is injected in the expectation
estimation of the first term of equation (2). For the expectation estimation of
the second term of equation (2) which involves pairs of models, ¥ is estimated
with ZA]mJ = (S, + 3)/2. Rearranging this using the transpose operator on
scalars, the proposed model variance estimation becomes

&?(Xo)
M

M
1 ~
6%(x0) = Ve > bl Hi S, H"ho, +

m,l=1

4 Synthetic experiments

The sigmoid function will be used as an activation function for all experiments.
Experiment A is a simple one-dimensional simulated case study of n = 60 train-
ing points. Input probability density is the trapeze shape defined by

T

plx) = —
p(x) = 0 otherwise. Outputs are generated with a Gaussian noise according to
y =sin(z) +e(z), with o2(z) =0.1.

The homoskedastic estimate is computed with N = 6 and M = 20. This
is repeated 1’000 times with fixed input. An example of prediction with twice
standard deviation estimate is displayed in Figure 1a). Notice that the true f(x)
lies within ] f () 4 26(z)], although this does not define a confidence interval —
as the distribution of f(z) — f(z) is unknown.

In order to evaluate our method, 10’000 ensembles with M = 20 and N = 6
are trained with new outputs. The variance of the 10’000 ensembles provides
a reliable baseline and will be used as a ground truth for the model variance.
Figure 1b) shows twice standard deviation around the mean of model variance
estimates and compares it with the ground truth. In average, the proposed
method recovers effectively the variance from the 10’000 simulations base line.
The increasing variance in the borders due to the side effect of the modelling is
fairly replicated. The uncertainty due to the trapezoidal shape of the input data
distribution is also captured. Qualitatively, all aspects of the expected variance
behaviour are globally reproduced. To assess quantitatively each estimation, we
follow [6]. Let us define se, = median; (6%(x;)), ex = median;|6(x;) — o(x;)]
|6k (x:) —0 (x4)]

g(X;

and re, = median; , which are respectively the median, the absolute

error and the relative error of the k** standard deviation estimate over the train-
ing set, for k = 1,...,1’000. Similar measures are defined on a random testing
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Fig. 1: Experiment A : (a) A single estimation; (b) Model variance estimates.

‘ Exp. A ‘ Exp. B ‘ Exp. C
Training set | Mean Std dev. Grnd tr. | Mean Std dev. Grnd tr. | Mean Std dev. Grnd tr.
sey, 0.088 0.009 0.089 0.265 0.008 0.244 0.428 0.016 0.386
ek 0.007 0.005 - 0.021 0.008 - 0.049 0.009 -
re 0.077 0.058 - 0.087 0.034 - 0.130 0.026 -
Testing set | Mean Std dev. Grnd tr. | Mean Std dev. Grnd tr. | Mean Std dev. Grnd tr.
sey, 0.087 0.008 0.088 0.284 0.009 0.261 0.458 0.017 0.403
ek 0.007 0.005 - 0.023 0.009 - 0.053 0.012 -
reg 0.077 0.059 - 0.088 0.034 - 0.136 0.033 -

Table 1: Results of the synthetic experiments.

set of 5’000 points. In order to compute these quantities, o(x;) is estimated with
the ground truth. The means and standard deviations of sey, ex and rej over
the 1’000 experiment repetitions are presented in Table 1. For the training set,
the ground truth is recovered by se; and the mean and standard deviation of ey,
appear quite small. The mean of rej shows that, on average, the median error at
training points represents 7.7% of the true standard deviation. This percentage
is inflated by the fact that we look at the standard deviation estimate and not at
the variance estimate. The results on the 5000 testing points are similar, which
shows that the estimation is good both at testing and training points.

Experiment B used the multivariate dataset described by Friedman in [7],
with fixed inputs x = (21, 2, 3, 4, 5) drawn independently from uniform dis-
tribution on the interval [0,1] and outputs generated with a Gaussian noise
according to

y(x) = 10sin(rz122) + 20(z3 — 0.5)* + 1024 + 5w5 +£(x), 02(x) = 0.5.

We draw n = 500 training points. The homoskedastic estimate with M = 20
and N = 92 is repeated 1’000 times while ground truth is recomputed. Results
are reported in Table 1. The training se; tends to slightly overestimate the
true standard deviation median over the training points. The testing se; has
an analogous behaviour. Although the testing se; tends to be greater than
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the training sey, the testing e, and rej are similar to the training e and reg,
showing again that the estimation works at testing points as well as at the
training points. The training (testing) re is 8.7% (8.8%), which is consistent
with the previous univariate case, considering the re; standard deviations.

Experiment C is the same as experiment B with a non-constant noise variance
inspired from [8] , 02(x) = 0.5 (1 + sin(0.87 - ||x|| — 0.67))* , where || - || denotes
the Euclidean norm. The heteroskedastic estimate is computed 1’000 times with
n = 500, M = 20, N = 73 and the results are shown in Table 1. Again, the
training (testing) sey tends to somewhat overestimate the true training (testing)
standard deviation median, and the training absolute (relative) errors are similar
to the testing ones. Although the testing rej reach 13.6%, it is still satisfying
considering the use of the heteroskedasic variance estimate.

5 Conclusion

As ELM can be seen as a linear regression in a random feature space, it was
possible to derive analytical results by conditioning model uncertainty quanti-
ties on the random input weights and biases, yielding probabilistic formulas. In
particular, the model variance, knowing input data, has been decomposed into
three terms, supporting the identification and the interpretation of the contribu-
tion of the different variability sources. Based on these formulas, estimations for
the model variance were provided for homoskedastic and heteroskedasic cases,
partly inspired from MLR theory. These results were confirmed by numerical
experiments.
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