
New Results on Sparse Autoencoders for
Posture Classification and Segmentation

Doreen Jirak and Stefan Wermter

University of Hamburg - Knowledge Technology
Vogt-Kölln-Str. 30, 22527 Hamburg - Germany

Abstract. This paper is a sequel on posture recognition using sparse
autoencoders. We conduct experiments on a posture dataset and show that
shallow sparse autoencoders achieve even better performance compared
to a convolutional neural network, state-of-the-art model for recognition
tasks. Also, our results support robust image representation from the
autoencoder model rendering further finetuning unnecessary. Finally, we
suggest using sparse autoencoders for image segmentation.

1 Introduction

Command gestures or counting with fingers are popular examples of hand pos-
tures called emblems. Due to their significant impact in communication, the
recognition of postures play a vital role in human-robot interaction (HRI). Deep
learning models, especially convolutional neural networks (CNN), show high
recognition accuracy for benchmarks but remain data-hungry and computation-
ally demanding. Image augmentation is used to generate necessary data, how-
ever, this may not apply when particular properties have to be maintained, as
e.g. in medical imaging. Finally, getting insights into the image representations
help to understand the underlying learning principles. These aspects motivated
a previous study [1] on sparse autoencoders, where we demonstrated their appli-
cability for posture recognition and the influence of learned representations on
performance. In this paper, we selected another posture dataset to find further
evidence of our results. Additionally, we compare the results with a CNN. Fur-
thermore, we give a proof of concept how sparse autoencoders can be used for
image segmentation.

2 Dataset and Methodology

We used the NUS-I dataset [2], which comprises 10 posture classes performed
by 24 subjects. We downsampled the images to pixel size 28× 28 [1] and added
a no hand condition computed from the mean background pixel value, yielding
264 images and 11 classes. As this work is a sequel to our previous study, we
use sparse autoencoders to learn the postures. They are unsupervised neural
networks trained by minimizing the mean-squared error between an original
image x and the reconstructed image y based on a set of neuron weights W in
a hidden layer representing image features. Additionally, a softmax classifier is
used for the classification. A finetuning step can be applied to further optimize
the features and, thus, the classification. The autoencoders can also be stacked,

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

187



which means that after training the first autoencoder, the resultant features are
passed to a second autoencoder and so on. The objective function J for sparse
autoencoder training is:

J (x, y) = min
W

[ N∑
i=1

(hW (x(i) − y(i))2 + λ(||W ||22) + β

m∑
j=1

KL(ρ||ρ̂j)
]

where the first sum term is the reconstruction error from the autoencoder for
N images, λ is the regularization to prevent overfitting. KL is the Kullback-
Leibler divergence between the desired firing rate ρ and the average ρ̂ summed
over m neuron activations in the hidden layer of the autoencoder. Parameter β
penalizes the divergence. The role of ρ is crucial as it controls the sparsity of
firing, i.e. the reaction of neurons to visual stimuli, to balance neural activity
and energy costs. Here, this means that neurons specialize to encode different
image features.

In contrast, a CNN consists of multiple filter maps of different sizes with
initally random weights which are trained using backpropagation along a layer
hierarchy. The cascading system of convolutions and pooling operations is re-
sponsible why CNNs can learn composite shapes like objects or faces, which
make them a state-of-the-art model for recognition tasks. However, training the
weights to represent significant image content is highly data-dependent and the
question is, therefore, how reliable CNNs perform for small datasets and whether
sparse autoencoders can be alternative models for limited-size data. To answer
this question, we set up CNNs and evaluate their performance for three popu-
lar optimizers: stochastic gradient descent with the momentum term γ (sgdm),
root-mean-square propagation (rmsprop) [3] providing a adaptive learning rate,
and the adaptive moment estimation [4] (adam) providing adaptive learning and
a term similar to training with momentum. In brief, let the network parameters
be denoted by weights ω ∈ Rd and the gradient Δ of an objective function J(ω).
An update over the parameter space using sgdm over time t is computed as:

vt = γvt−1 + ηΔωJ(ω;x
(i:i+n); y(i:i+n))

ω = ω − vt

where γ is the momentum term, η is the learning rate, and training is done with
mini-batches of size (i : n) for input-output pairs (x; y). The parameter update
for rmsprop [3] is :

ωt+1 = ωt − η√
E[g2]t + ε

gt

where E[g2]t denotes the average of squared gradients g at time t, gt is the
gradients at time t, and ε is a small value to prevent division by zero. The adam
optimization [4] integrates first and second moment estimates, denoted as m̂ and
v̂ into the gradient updates:

ωt+1 = ωt − η√
v̂t + ε

m̂t

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

188



where m̂t and v̂t are computed as:

m̂t =
mt

1− φt
1

mt = φ1mt−1 + (1− φ1)gt

v̂t =
vt

1− φt
2

vt = φ2vt−1 + (1− φ2)g
2
t

3 Experimental Settings

We use 70% of the images for training and 30% for test [1], the logistic sig-
moid activation function and backpropagation with scaled conjugate gradient
optimization (scg) [5]. We ran 20 trials with 500 epochs for each layer L1 and
L2 with numbers of neurons N1 = 100 and N2 = 50. Table 1 summarizes all
parameters. To compare with [2], we also used an image size of 128×1281 and a
split of 50% training and 50% test (in reference paper: N=2 [2]). Training time
was around 10 minutes (CPU, 3.3GHz).

λL1
βL1

ρL1
λL2 βL2

ρL2
N1 N2

0.001-0.01 1-4 0.1-0.4 0.01 1-4 0.1-0.4 100 50

Table 1: Autoencoder parameter

We used a standard CNN for comparison reason and to check whether they
achieve better results. To compare with [2], we kept the image resolution 120×
160. We used a 3-layer CNN as we observed no reasonable performance with
less layers, certainly due to CNNs relying on computing image compositions.
Table 3 summarizes the filter sizes and number of maps in layers L. We used
a stride s = 1, if not specified differently. As a trade-off regarding computing
times, we discarded the pooling operation in L3. No zero padding to the image
was necessary. We used the ReLU activation function at each layer and batch
normalization. We fixed λ = 1e − 8 and the number of epochs to 100 with a
mini-batch size of 32. At every epoch, those sets were randomly shuffled. All
other settings follow the protocol for autoencoders. The training time for all
optimizers was around 1.5h (CPU, 3.3GHz). For sgdm, we set the momentum
term be γ = 0.9 and the learning rate η = 0.01 [3]. We set up experiments with
either a constant or an adaptive learning rate η, the latter multiplied by 0.1 at
every 10th epoch. We set the learning rate η = 0.001 for adam and rmsprop.
We let φ1 = 0.9, φ2 = 0.999, and ε = 1e− 8 [4].

1The input to the autoencoder is a square matrix

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

189



L1 L2 L3

conv 10× 10 (10) 4× 4 (10) 2× 2 (10)
pool 5× 5 (5) 2× 2, s = 2 -

Table 2: Configuration of the CNN.

4 Results and Evaluation

We evaluate the test set regarding parameters ρ and β as they influence the
performance. Table 3 shows the median and mean accuracy averaged over 20
trials for both for classification with the autoencoder and softmax classifier only,
and after finetuning (cf. [1]). For ρ = 0.1 and ρ = 0.2 the performance was

Accuracy (%) AE+softmax Finetuning
ρ mean median mean median
0.1 84.75 84.81 85.44 86.08
0.2 85.00 84.81 85.50 86.08
0.3 83.99 84.18 84.30 84.81
0.4 82.91 82.28 83.41 83.54

Table 3: Average accuracy with fixed β = 1 for one layer sparse autoencoder
(L1).

equal, so we conclude that for small dataset ρ it suffices to provide a low value.
Increasing β did not lead to performance improvement. Trial analyses using the
McNemar test with significance level α = 0.01 revealed no statistically signifi-
cant performance differences between autoencoder only and finetuning. Using
the L2 design yield no significant performance improvements: we obtained an
accuracy of 87.34% for ρ1 = ρ2 = 0.1 and β1 = 4, β2 = 1 when finetuning. This
is marginally different compared to L1 and across all other parameter config-
urations. Using a larger image size to compare with [2], we obtained 84.81%
accuracy but notably trained on only 50% of the images. The McNemar test
showed no statistical difference between the autoencoder and the finetuning.
With a computation time of ≈ 5 hours (CPU, 3.3GHz), dropping finetuning for
time compensation becomes a crucial factor. Table 4 shows the results from
different optimization schemes including dropout. The table suggests a perfor-
mance gain for dropout=0.5, however, we observed strong fluctuations when
training with rmsprop. That no dropout seems the best option can possibly be
explained by the limited size of the dataset where generalization is less an issue.

5 Learning Representations for Image Segmentation

As this work is a sequel to a previous study, we revisit the Triesch dataset
[6] (JTD) where we showed the impact of image backgrounds (white, black,

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

190



% adam rmsprop sgdm
no dropout 80.26 76.32 73.68
dropout 0.1 77.63 75.00 72.37
dropout 0.5 78.95 79.61 76.32

Table 4: Median accuracy for the NUS-I dataset for different optimizers.

Fig. 1: Results from the segmentation.

complex) on the performance using the autoencoder architecture. Especially the
complex patterns are challenging and postures are even hard to identify with the
human eye. Originally developed to apply hand graphs, we hypothesized to use
the learned representations of the sparse autoencoders for image segmentation
[1]. We show a proof of concept of this idea. A naive approach would be to just
multiply the black images with the complex ones, as “black” equals to a 0 in an
image. We observed that is indeed not the case and this operation does not lead
to the desired segmentation. Alternatively, using the encodings2 from trained
sparse autoencoder on black images can be applied (see Figure 1) as it learns
significant hand features like fingertips. For final segmentation, we binarized
all images at pixel value 0.5 (normalized) and computed the Jaccard coefficient.
Figure 2 shows that our approach is superior, for 141 images we obtained a
higher Jaccard coefficient using the encodings compared to the multiplication.

6 Conclusion

This sequel to our previous study supports that sparse autoencoders are viable
models for posture recognition, further supported by a comparison with a stan-
dard CNN, which did not show superior performance. The advantage using
sparse autoencoders is that they are fast to train without provision of large,
labeled datasets. Although we did not improve the original performance, we
obtained good performance for a shallow sparse autoencoder with a small image
size and low number of encoding neurons (≈ 1/7 compression), which indicates
that this model is able to learn a sufficient image representation. Our present

2We used the penalty β = 10

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

191



Fig. 2: The Jaccard coefficients for the segmentation.

study is not limited to postures but provides interesting insights into computa-
tional models for application constrained by limited data such as medical images,
which prohibits image augmentation to preserve characteristics of images from,
e.g., brain tissue. We sketched an approach how to use encodings for image seg-
mentation and we are currently running segmentation experiments using “hands
in the wild” to extrapolate our study to realistic environments.

References

[1] Doreen Jirak and Stefan Wermter. Sparse autoencoders for posture recog-
nition. In Proceedings of the International Joint Conference on Neural Net-
works (IJCNN 2018), Jul 2018.

[2] P. PramodKumar, Prahlad Vadakkepat, and Ai Poh Loh. Hand posture and
face recognition using a fuzzy-rough approach. I. J. Humanoid Robotics,
7:331–356, 2010.

[3] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude, 2012.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[5] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast
supervised learning. Neural Networks, 6(4):525 – 533, 1993.

[6] Jochen Triesch and Christoph von der Malsburg. Classification of hand pos-
tures against complex backgrounds using elastic graph matching. Image and
Vision Computing, 20(13):937 – 943, 2002.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

192




