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Abstract. Computing the nonnegative rank of a nonnegative matrix
has been proven to be, in general, NP-hard [1]. However, this quantity
has many interesting applications, e.g., it can be used to compute the ex-
tension complexity of polytopes [2]. Therefore researchers have been trying
to approximate this quantity as closely as possible with strong lower and
upper bounds. In this work, we introduce a new lower bound on the non-
negative rank based on a representation of the matrix as a pair of nested
polytopes. The nonnegative rank then corresponds to the minimum num-
ber of vertices of any polytope nested between these two polytopes. Using
the geometric concept of supporting corner, we introduce a parametrized
family of computable lower bounds and present preliminary numerical re-
sults on slack matrices of regular polygons.

1 Nonnegative rank and nested polytope problem

Introduction The nonnegative rank of an entry-wise nonnegative matrix, de-
noted rank+, is the minimum number of nonnegative rank-one matrices whose
sum is equal to that matrix. Equivalently, for a matrix M ∈ Rm×n+ it is the
smallest positive integer r such that there exists U ∈ Rm×r+ and V ∈ Rr×n+ such
that M = UV . The nonnegative rank features several interesting applications,
such as providing a way to compute the extension complexity of a polytope
(which is equal to the nonnegative rank of its slack matrix1 [2]). Computing
the nonnegative rank and a corresponding factorization has been proven to be,
in general, NP-hard [1]. Hence several tractable lower bounds have been devel-
oped to approximate it as closely as possible, see for example [3, 4, 5, 6]. In
this work, we introduce a new lower bound on the nonnegative rank based on a
representation of the matrix as a pair of nested polytopes.

Nested polytope problem We first describe how a nonnegative matrix can be
represented by a pair of nested polytopes, as introduced in [7], and show that
the nonnegative rank of that matrix can be found by solving a geometric problem
involving that representation, called the nested polytope problem (NPP).

Definition 1 (NPP). Let O be a polytope given by its facets and let I be a
polytope given by its vertices such that I ⊆ O. Find the minimum number of
points belonging to O whose convex hull contains I, i.e., find the minimum k
such that there exists k points {pi} satisfying I ⊆ T = conv{p1, . . . , pk} ⊆ O.

1A polytope can be defined either as the convex hull of its vertices, conv{v1, . . . , vn} or an
intersection of half-spaces, {x : a>i x ≤ bi, i = 1, . . . ,m}. The slack matrix of such a polytope

is defined as the m× n nonnegative matrix S such that Si,j = bi − a>i vj .
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While there exists a polynomial time algorithm to solve this problem if I
and O are polygons, i.e., 2-dimensional polytopes [8], it has been recently proven
that this problem is in general ∃R-complete [9]. This complexity class consists of
problems that can be polynomially reduced to the problem of deciding whether
a system of polynomial equalities and inequalities admits a solution.

Representation as nested polytopes Let M ∈ Rm×n+ be a nonnegative matrix.
Without loss of generality, let us assume that M has no column containing only
zeros (as those do not modify the nonnegative rank) and is column-stochastic
(as applying a positive scaling to the columns of a matrix does not modify its
nonnegative rank [7]). Note that we could alternatively assume that M is row-
stochastic and use its transpose to obtain another representation as a pair of
nested polytopes.

We build a pair of nested polytopes corresponding to such a matrix M in the
following way. First, we pose the problem in Rm and define the outer polytope
O to be the simplex given by O =

{
x ∈ Rm | xi ≥ 0 ∀i and

∑m
i=1 xi = 1

}
. We

then use the columns of M as the n points whose convex hull defines the inner
polytope I (and indeed we can check that I ⊆ O).

Theorem 1. Let M be a column-stochastic matrix and let I ⊆ O be the pair of
nested polytopes corresponding to M . Let k be the solution of this NPP instance,
then rank+(M) = k. (all proofs are omitted due to space restrictions)

Another way of representing a nonnegative matrix as a NPP instance was
introduced in [6]. In that representation, the solution of the NPP instance cor-
responds to the so-called restricted nonnegative rank, a variation of the nonneg-
ative rank which requires that the column-space of the first factor U is the same
as the column-space of the original matrix M . In that representation, the inner
and outer polytopes have the same affine hull dimension, which is not always
the case in the representation described in this work.

As it has been recently proven that NPP is ∃R-complete, solving the NPP
instance corresponding to a nonnegative matrix is not a priori easier than com-
puting the nonnegative rank directly. However, we can derive a lower bound on
the nonnegative rank from geometric properties of the NPP instance.

2 Lower bounds

2.1 Supporting corners and disjoint corners bound

First recall the concept of support function.

Definition 2. Let d be a direction in Rm, i.e., a nonzero unit vector, and let P
be a polytope. Denote the usual inner product by 〈., .〉. The support function of
P with respect to d is given by σ(d, P ) = maxx∈P 〈d, x〉.
Let us introduce the following notion illustrated on Figure 1.

Definition 3. Let I ⊆ O ⊆ Rm be a pair of nested polytopes defining a NPP
instance and let d be a direction in Rm. Define a supporting corner as

C(d) = {x ∈ O|〈d, x〉 ≥ σ(d, I)}.
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Fig. 1: NPP instance (black) with solution T (blue) and supporting corner C(d)
(red). Instance shown is for m = 3, but depicted after projection on (x1, x2),
i.e., O = {(x1, x2) : x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1⇔ x1, x2 ≥ 0, x1 + x2 ≤ 1}.

Note that set {x ∈ Rm|〈d, x〉 = σ(d, I)} is a supporting hyperplane of I, which
means that a supporting corner can also be defined using any supporting hy-
perplane of I (in which case the direction is the normal to the hyperplane). We
now introduce the main property on which our new lower bound is based.

Property 1. Let I ⊆ O be a pair of nested polytopes and T any polytope nested
in between, i.e, such that I ⊆ T ⊆ O. Any supporting corner must contain at
least one vertex of T .

Using this property, we can introduce several ways to compute lower bounds
on the solution of the NPP, which translates into lower bounds on the nonneg-
ative rank. A first idea consists in finding the maximum number of disjoint
supporting corners.

Theorem 2. Let I ⊆ O be a pair of nested polytopes. Let d1, . . . , dk be k direc-
tions such that the corresponding supporting corners C(di) are pairwise disjoint.
Then, any polytope T such that I ⊆ T ⊆ O must have at least k vertices.

However, if the inner polytope is small relative to the outer polytope, it can
be difficult to find a large number of pairwise disjoint supporting corners, leading
to a weak bound. The next section introduces a stronger bound.

Infinite dimensional reformulation We first propose an equivalent formulation
of NPP using the notion of supporting corner: the minimum number of vertices of
a nested polytope is equal to the minimum number of points that simultaneously
satisfy Property 1 for all directions/supporting corners.

Theorem 3. Let I ⊆ O be a pair of polytopes defining a NPP instance. Let
D be the set of all directions. The minimum number of vertices of a polytope T
such that I ⊆ T ⊆ O is equal to the minimum number of points p1, . . . , pk ∈ O
such that ∀d ∈ D,∃i ∈ {1, . . . , k} such that pi ∈ C(d).
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2.2 Relaxation and additional bounds

This formulation is infinite-dimensional (both because of its variables, which
are all points in O, and of its constraints, indexed by all directions in D) and
cannot be solved exactly. Hence we propose to relax it, which will provide lower
bounds on its optimal value. First, we select D̂ ⊂ D, a finite subset of directions,
implying we will only consider a finite number of supporting corners (and a finite
number of constraints). Now, each points in O will belong to a certain list of
supporting corners and, for the purpose of the reformulation of Theorem 3, two
points belonging to the same list of supporting corners are completely equivalent.
Therefore we can partition all points in O into a finite number of equivalence
classes, denoted by Ô. Finally, we introduce binary variables xj (to select the
points/equivalence classes) and end up with the following (where Md,j is a
binary indicator of inclusion xj ∈ C(d))

L0,1(Ô, D̂) = min
xj∈{0,1},j∈Ô

∑
j∈Ô

xj s.t.
∑
j∈Ô

Md,jxj ≥ 1,∀d ∈ D̂

This finite integer linear optimization problem (or its continuous relaxation with
xj ≥ 0 instead of xj ∈ {0, 1}, denoted LR(Ô, D̂)) can now be solved numerically,

and will give a lower bound L•(Ô, D̂) ≤ rank+(M) for any set of directions D̂.
The dual of this linear program is also interesting, because its interpretation

links back to the initial lower bound from Theorem 2, i.e., finding the largest
number of pairwise disjoint corners. The dual is given by

ΓR(Ô, D̂) = max
yd≥0,d∈D̂

∑
d∈D̂

yd s.t.
∑
d∈D̂

Md,jyd ≤ 1,∀j ∈ Ô

In the integer version of this problem, we want to find the largest number of
directions/supporting corners such that each point/equivalence class is contained
in at most one, i.e., this consists exactly in finding the largest number of pairwise
disjoint corners. Finally, the optimal solutions of these problems satisfy the
following relation

Γ0,1(Ô, D̂) ≤ ΓR(Ô, D̂) = LR(Ô, D̂) ≤ L0,1(Ô, D̂) ≤ L0,1(O,D) = rank+(M)

This shows that solving any of these problems (with any set of directions D̂)
gives a lower bound on the nonnegative rank of the input matrix.

3 Numerical experiments

3.1 Computing lower bounds numerically

In this section, we perform some preliminary numerical experiments. To compute
a lower bound, we must generate a set of directions. We use the following set D̂N
which attempts to spread directions over the whole space (we also tried random
generation of directions, and observed similar but slightly worse results)

D̂N =

{
d ∈ Rm :

m∑
i=1

d2i = 1, d2i =
k

N
for some integer k ∈ [0, N ]

}
.
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To define the set Ô of equivalent classes of points, we must in principle com-
pute all intersections between sets of supporting corners. However, the number
of regions and the computation time then grows exponentially with the number
of directions. To avoid this, we use instead a fixed discretization of the outer
polytope, independent of the set of directions. We chose to use small hypercubes
(which may be truncated) as regions by dividing each interval [0,1] on the axes
of the space in K subintervals of same length.

ÔK =

{
C1 × · · · × Cm : Ci =

[
k

K
,
k + 1

K

]
, for some k = 0, . . . ,K − 1

}
∩O.

We then adapt the definition of the L0,1(Ô, D̂) linear program to preserve the
lower bound property: binary indicators of inclusion are now equal to one as
soon as a region in ÔK features a nonempty intersection with a corner.

3.2 Numerical results on slack matrices

We tested the lower bound on the slack matrices of regular polygons, from 4-
gon to 8-gon. The slack matrix of a regular n-gon is a circulant matrix and its
first row is symmetric (ck = cn−k−1) with ck = cos

(
π
n

)
− cos

(
(2k + 1)πn

)
. As

L0,1(Ô, D̂) = dLR(Ô, D̂)e always holds in our tests, we only focus on LR(Ô, D̂).

ID 4-gon 5-gon 6-gon 7-gon 8-gon
rank+ 4 5 5 6 6

|Ô7| / |D̂6| 88/608 236/1970 562/5336 1219/12642 2452/27008

LR(Ô7, D̂6) 4 4.25 4.05 3.5 3.25
Time[s] 0.81 1.71 6.87 38.4 247

LR(Ô7, D̂) 4 4.33 4.5 3.5 -
Time[s] 7 357 19072 * -

|D̂| 8 36 46 164 -
From [4]/[5] 4/4 5/5 4.69/5 5.03/6 5.15/6

Table 1: NPP bound for regular polygons. In bold, values that close the gap
with the true value of rank+ (possibly after rounding up)

We fix the direction parameter N = 6 and outer discretization parameter
K = 7, and display the corresponding numbers of corners/regions in the table.
Computed values of LR(Ô7, D̂6) for each slack matrix are reported, with CPU
time, in the third row of Table 1; we observe that some lower bounds are tight
(in bold). Bounds for the 7- and 8-gon are weaker, and we suspect that a larger
value of parameter K is needed to close the gap (however the bound is not
monotone in K: for example, for the 5-gon, we obtain LR(Ô8, D̂6) = 4 6≥ 4.25).

Dynamic generation of directions When moving to larger slack matrices, the
number of directions grows, increasing our computational effort. To counter this
effect, we tested a procedure that successively adds directions to the problem
(instead of considering a fixed set D̂N ). New directions are chosen so that they
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reject the previous optimal solution, hoping to increase the value of the bound;
they are computed using a mixed-integer linear program (using one binary vari-
able per region in ÔK). We stop when the (rounded) bound is equal the true
nonnegative rank, or when no new direction can be found.

Results are displayed on the fourth row of Table 1. This dynamic approach
appears to require more computational effort. Nevertheless, we observe for 4-,
5- and 6-gons that it finds lower bounds that are as good as the fixed D̂6 bound,
but with much fewer directions (for instance 46 directions instead of more than
five thousands for the 6-gon). In essence this provides us with more compact
certificates for those nonnegative ranks. The case of the dynamic approach for
the 7-gon is slightly different: it was started with the full set of directions D̂6,
which gives a bound equal to 3.5, and the goal was to improve that bound.
Instead, the procedure found that no direction can improve the bound, implying
that improving the bound requires to increase the outer discretization parameter
K. This seems to support our claim that the higher the value of n, the finer the
discretization is needed to be to obtain good lower bounds.

4 Conclusion

In this paper, we introduced new lower bounds on the nonnegative rank based
on a nested polytopes formulation. Numerical experiments on small slack ma-
trices demonstrate that this approach is promising, as the bound can be close
to the true nonnegative rank or even tight. In the future, we plan to focus on
the computational efficiency of our procedure, which will allow tests on larger
matrices with higher values of the discretization parameters N and K.
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