
Resume: A Robust Framework for Professional
Profile Learning & Evaluation

Clara Gainon de Forsan de Gabriac Amina Djelloul
Constance Scherer Vincent Guigue

Patrick Gallinari ∗

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract. Professional Profile Extraction is a crucial challenge for any
HR department. In this paper, we propose an approach to learn and
evaluate professional embeddings. We first highlight the technical issues
associated with this specific data; then, we propose an architecture that
compares different language models to encode the textual information;
finally, we learn user profiles and propose three original evaluation tasks
to illustrate the strengths and weaknesses of our approach.

1 Introduction

Learning to match candidates with job offers is a major challenge for any institu-
tion’s human-resources department. The fast development of online job-boards
(Monster, JobTeaser . . .) and professional social networks such as LinkedIn,
makes this task increasingly crucial [1]. As such, improving profile modeling on
both users and jobs may allow developing new tools to suggest relevant skills and
to connect unformatted job titles and descriptions to standardized ontologies like
ESCO1.

In this work, we propose a method to learn and evaluate professional profiles
using the information contained in a user’s LinkedIn profile. Unlike traditional
Expertise Matching methods that mainly rely on categorical data, we aim at
building meaningful professional representations using only user-generated texts
(their job titles and descriptions) during training in a self-supervised setting.
We want our profiles to encode a sufficient amount of information to predict the
future of users’ careers. We also try to determine the skills and the industrial
field associated with a profile.

Several technical issues make this problem difficult: job titles (and descrip-
tions) are free texts: not only are they noisy and subject to typos, but they also
prevent us from adopting a classification framework; there are as many jobs as
there are users. Moreover, aggregating different jobs to build a single user profile
is harder than it looks as users often mention several times the same job before
obtaining a promotion. Finally, we chose a challenging framework where the
final tasks –skills, industry and job predictors– are used for evaluation purposes
only, without helping to refine profiles. We want to demonstrate our ability to
encode relevant information in a very compact embedding from a noisy data
source.

∗This work is partially supported by FUI BInD.
1https://ec.europa.eu/social/main.jsp?catId=1326

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

97

https://ec.europa.eu/social/main.jsp?catId=1326

Project Manager
Leader of a group of 7 people and responsible of relations
with a subcontractor. Development of an open-source [...]

Deputy Project Manager & Developer
Creation of a service translating English sentences to SQL
queries. Technologies: SQL, Java, Spring, NLP [...]

Software Development Intern
Module Development: Modules are packages that can be
deployed on a Jahia platform to extend or modify it, [...]

...

j0

jT

jT+1

Professional Experiences
Information Technology and Services

Industry

Skills
Software

Development

Java

Microsoft Office

Management

...

Fig. 1: User’s profile schema. A user is composed of their professional experi-
ences, their industry and their skills. The last job, jT+1, the industry and the
skills (in orange) are the labels we use to evaluate our users’ representations.
Note that the skills and industry are categorical values, whereas jt (which the
concatenation of both the job title and the job description) is free text.

While text representation has long been performed at the document level in
a bag-of-words setting [2], Word2vec [3] enables us to predict words in a local
context opening the way for meaningful word embeddings and text generation
applications. A second generation of language models introduces a solution to
take into account out-of-vocabulary words through subword information encod-
ing [4] and even more recent proposals focus on contextual embeddings and
generative settings to improve sentence understanding [5]. In the field of pro-
fessional profile extraction, [1] exploit a supervised framework to identify fake
profiles on LinkedIn; our approach is closer to Text Summarization [6, 7] in the
sense that we do not rely on supervision to learn profiles. On top of that, we
also aim at generating texts to predict the next job of a particular user.

Our framework Resume relies on state-of-the-art robust language models to
encode textual information [4, 5]. Then we aggregate job embeddings to build a
user representation. On top of this framework, our main contribution resides in
the evaluation approach; we were provided with more than 500k LinkedIn pages
(Fig. 1) which enables us to measure quantitatively our ability to predict skills
and industrial field for our set of users. We also provide an original RNN based
generative approach for the next job prediction task as well as an evaluation
procedure relying on a summarizing metric [8].

In this article, we introduce our models, detail the experimental settings in
which we built our representations and, finally, we show that the noise level in
the raw data leads to a surprising ranking of our approaches.

2 Models

Each user’s raw data consists in a set Ju of chronologically ordered free texts:
Ju = {j0, . . . , jT , jT+1}. The user is also associated to a set of skills described
as a binary vector in the skill domain: su ∈ {0, 1}S . The industrial field is
denoted bu ∈ {1, . . . , B}. Our models are composed of a job encoder that deals

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

98

with raw texts and a job aggregator that outputs a user profile: zjt = enc(jt),
zu = agg(zj0 , . . . , zjT). Then we train three independent components tackling
the next job prediction task ĵT+1 = dec(zu), the skill prediction ŝu = fs(zu) and
the industrial field categorization b̂u = fb(zu).

2.1 Text, Job and User Representations

We aim at representing a user’s professional information using only their past
jobs. Such data is noisy and contains a lot of out-of-vocabulary or rare tokens
(e.g. product names or misspelled words). We thus choose recent text-encoding
models capable of leveraging subwords information: FastText and ELMo.

Language models. FastText is a word embedding model based on a skip-gram
formulation and optimized using negative sampling. However, it is more robust
than Word2vec since it relies on subword encoding. Each character n-gram will
correspond to a zg embedding and a word embedding is simply the sum of its
subwords’ representations zw =

∑
g zg. Note that the word itself is part of its set

of n-grams. At the word level, the skipgram formulation is implemented using a
Binary Logistic Loss sliding on the text of size T with a context-window Ct for
the word wt:

BLL(w) =
T∑

t=1

∑
c∈Ct

`(z>wt
zwc

) +
∑
c̄/∈Ct

`(−z>wt
zwc̄

)

 ,with: `(x) = log(1 + e−x)

As FastText is light and easy to train, we will compare pre-trained and specifi-
cally trained embeddings on our different tasks.

ELMo is a recent language model relying on contextual embeddings: words’
representations depend on their contexts. In practice, zw are obtained after
running a bi-directional recurrent neural network over the text: zw is an aggre-
gation of the representations of previous words until w in one direction and of
the following words in the other direction. As opposed to FastText, ELMo relies
upon millions of parameters and we will only use the pre-trained version of this
language model.

Profile representation. In this work, a job jt = (w
(t)
1 , ..., w

(t)
N) is simply encoded

by averaging all its words’ representations: zjt = 1
N

∑N
n=1 zw(t)

n
. Then, we

represent users as an aggregation of their jobs: zu = 1
T+1

∑T
t=0 zjt .

2.2 Tasks, Predictors & Decoder

We evaluate the meaningfulness of our users’ representations through 3 tasks:
the prediction of their skill set, the prediction of their industrial field and the
generation of their last job. We refer to them as the Skill Predictor, the Industry
Predictor, and the Last Job Decoder.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

99

Predictors. Since we aim at evaluating our embeddings’ quality, we made the
predictors simple. Both the Skill Predictor fs and the Industry Predictor fb
consist of two linear layers separated with tanh activation functions and followed
by a sigmoid for the former and a softmax for the latter:

fs(zu) = sigmoid(W>2 (tanh(W>1 zu))), fb(zu) = softmax(U>2 (tanh(U>1 zu))).

When predicting a user’s skill set, we are interested in predicting all the
right skills and only the right skills, placing us in a multi-label classification
task. This predictor is trained to optimize a Binary-Cross-Entropy Loss function.
The industry prediction is a simple mono-label classification task. The Industry
Predictor is trained to optimize a Cross-Entropy Loss function.
Decoder. The Last Job prediction, however, is a harder task: it cannot be
addressed as a classification task since the number of unique jobs is in the same
order of magnitude as the number of users. Thus, we choose to generate the
title and the description of a user’s last job jT+1 from his representation zu. In
this context, we implemented a LSTM, followed by a linear layer (of weights V),
that decode zu into a sequence of words ĵT+1. At each time step, we feed the
decoder dec(zu, w

(T+1)
n) both the user representation zu and the last-predicted

token w
(T+1)
n and it outputs the next token ŵ

(T+1)
n+1 = V >lstm([zu, w

(T+1)
n]).

It is trained to optimize a Cross-Entropy Loss function between the predicted
word ŵ

(T+1)
n and the label w(T+1)

n , for every word in the actual sequence.

3 Experiments and Results

In this section, we present our results and analyze them. After giving all imple-
mentation details to ensure reproducibility, we propose to challenge our mod-
els with relevant baselines. We chose a strong and simple approach based on
the most common classes: we always predict the most common industrial field
(“Marketing and Advertising”) and the M most frequent skills, M being the av-
eraged number of skills per profile (M = 10). Similarly, we propose the N most
common words as a baseline for the last job prediction (N = 41).2

3.1 Dataset and Training Details

Our dataset consists of over 500,000 LinkedIn users’ pages, and almost 5,000,000
professional experiences once we eliminate profiles with less than 3 jobs. There
are more than 95,000 different skills cited in the dataset but we only retained
those appearing in at least 3000 profiles, leaving us with 523 skill classes. Simi-
larly, we kept 147 industrial fields, also referred to as industries.

Our 3 user representations rely respectively on a FastText model trained on
our data FTCV , a pre-trained FastText FTpt

3 and a pre-trained ELMo.4

2Resulting sentences are unintelligible but it should be very strong to retrieve unigrams (in
particular for the stopwords).

3https://fasttext.cc/docs/en/crawl-vectors.html
4https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

100

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

Both the Skill Predictor and the Industry Predictor were trained on a hun-
dred epochs with an Adam optimizer (with the recommended hyper-parameters)
and a batch size of 160. Both models have a hidden layer size equal to the input
layer size. The Last Job Decoder was trained with a batch size of 100 and a
vocabulary restricted to the 40,000 most frequent words of our dataset.

For this latter task, we evaluate our results using the Bleu metric which
measures the quality of a textual prediction with respect to a ground truth [8].

3.2 Results and Analysis

The results of our classification tasks on skills and industry prediction and those
of text generation are reported in Table 1 and Table 2 respectively. Those results
show that the FTCV outperforms the other models in both skills and industry
prediction, as well as in text generation. This ranking among our approaches is
surprising, it points out that the CV style does not follow a classical language
model: a (very) robust and dedicated model is required to tackle misspellings,
abbreviations, ellipses, acronyms that characterize the fast writing style observed
on CV. The same kind of conclusions has been drawn in [9].

Such results, while initially counter-intuitive, can be empirically understood
when taking a closer look at the predictions. The last job generation highlights
the difficulty for our models to generate long job descriptions as well as very
specific sentences. For instance, the encoding-decoding process gives:

GT:
Title: E-commerce Consultant,
Desc: My mission consists in reaching the goals set up by the clients regarding
their profitability and/or notoriety issues [...]

FTpt

Title: Marketing Manager,
Desc: Management of the client relationship, Social networks management,
Social networks management [...]

FTCV

Title: Marketing Manager,
Desc: Managing the communication strategy and the communication strategy
for clients[...]

ELMo
Title: Secteur Manager,
Desc: Management of the client relationship, [UNK], stock management, stock
management [...]

Such predictions highlight the complexity and diversity of our data. While
not human-like, those predictions can add a lot of value to a CV database as
they capture the essence of a career. The analysis of both skills and industry
prediction for all three models indicate that a consequent part of the wrong
predictions make sense to a human reader. For instance, a profile containing the
skills Office Pack, Photoshop and Marketing is predicted to have the Microsoft
Word, Adobe Photoshop and Digital Marketing skills. Similarly, a Developer
working in the Pharmaceutical Industry can be either predicted in the “IT” or
the “Pharmaceutical” industry. Those observations lead us to believe that the
representation of our users is rather satisfactory. Most prediction errors are
understandable and could be tackled by a more thorough data pre-processing.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

101

Model F1 score - Skills Prediction Accuracy - Industry Prediction

Most Common 24.0% 6.3%
FTpt (pre-trained FastText) 40.9% 35.6%
FTCV (CV-oriented FastText) 42.4% 38.4%
ELMo 39.0% 30.7%

Table 1: Experimental results on the classification tasks.

Model
Bleu score (Last Job)

Bleu Bleu-1 Bleu-2 Bleu-3 Bleu-4

Most Common 0.00 33.3 0.3 0.0 0.0
FTpt (pre-trained FastText) 1.91 20.6 3.5 0.8 0.2
FTCV (CV-oriented FastText) 2.15 22.2 3.8 0.9 0.3
ELMo 1.74 22.5 3.8 0.6 0.2

Table 2: Experimental results on job prediction (title & description).

4 Conclusion and Discussion

We propose a novel approach to professional profile learning, Resume, that is
self-supervised and relying on free text, along with three evaluation tasks. We
compare the impact of the use of a language model to the use of a word embed-
ding model on our evaluation tasks. Our experiments show that using a word
embedding model to represent users is not only sufficient to modelize their pro-
fessional information but also outperforms heavier language models architecture
on all of our tasks. In future work, we want to address the representation of even
more complex entities, such as companies and especially the prediction of even
more elaborate signals, like fund-raising or company expansion. Another appli-
cation could be a job training model, helping users reach their career objectives
by indicating the skills they should acquire.

References
[1] Shalinda Adikari and Kaushik Dutta. Identifying fake profiles in linkedin. In PACIS, 2014.
[2] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet

allocation. Journal of Machine Learning Research, 2003.
[3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed

representations of words and phrases and their compositionality. CoRR, 1310.4546, 2013.
[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. CoRR, 1607.04606, 2016.
[5] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. CoRR,
1802.05365, 2018.

[6] Inderjeet Mani. Advances in Automatic Text Summarization. MIT Press, 1999.
[7] R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summariza-

tion. CoRR, 1705.04304, 2017.
[8] T. Ward K. Papineni S. Roukos and W. Zhu. Bleu: A method for automatic evaluation of

machine translation. In ACL, 2002.
[9] Pallavi Jain, Robert Ross, and Bianca Schoen-Phelan. Estimating distributed representa-

tion performance in disaster-related social media classification. In ASONAM, 2019.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

102

	Introduction
	Models
	Text, Job and User Representations
	Tasks, Predictors & Decoder

	Experiments and Results
	Dataset and Training Details
	Results and Analysis

	Conclusion and Discussion

