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Abstract. The presence of irrelevant features in the input dataset tends
to reduce the interpretability and predictive quality of machine learning
models. Therefore, the development of feature selection methods to rec-
ognize irrelevant features is a crucial topic in machine learning. Here we
show how the General Regression Neural Network used with an anisotropic
Gaussian Kernel can be used to perform feature selection. A number of
numerical experiments are conducted using simulated data to study the
robustness of the proposed methodology and its sensitivity to sample size.
Finally, a comparison with four other feature selection methods is per-
formed on several real world datasets.

1 Introduction

Machine Learning (ML) approaches have become popular tools to analyze, model
and extract knowledge from data and to understand complex non-linear phenom-
ena. However, because of the previously unseen growth of data collection and
storage, recognizing the important predictors associated with response variables
among a large set of features has become an extremely challenging task [1]. The
presence of irrelevant features in a dataset amplifies the effects of the well-known
curse of dimensionality [2].

Feature Selection (FS) has therefore become a crucial issue. Features can
be broadly classified into completely irrelevant, weakly relevant and redundant,
weakly relevant and non-redundant, or strongly relevant [3]. A robust FS al-
gorithm will select the features belonging to the last two categories, generally
named as relevant. In this paper we will show how Anisotropic General Regres-
sion Neural Network (AGRNN), proposed by Specht [4] as an adaptation of the
Nadaraya-Watson estimator [5] for prediction, can be used to perform FS when
used with an anisotropic Gaussian Kernel. Two experimental case studies based
on simulated and real data, respectively, are discussed in detail.

The remainder of the paper is organized as follows. Section 2 briefly presents
the AGRNN. Section 3 describes the novel FS algorithm. Section 4 presents the
experimental results. Section 5 gives information about the software availability.
Finally, Section 6 presents some conclusions and gives a plan for the future work.
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2 The General Regression Neural Network

The General Regression Neural Network (GRNN) is a regression model. The-
oretically, the regression of a scalar y on a vector of independent variables x,
minimizing mean square error, is defined as a conditional mean value:

EY |X =

∫∞
−∞ y fXY (x, y) dy∫∞
−∞ fXY (x, y) dy

However, in real case studies the joint probability density function fXY (x, y)
is not known. Though, it can be approximated using a multivariate Parzen-
Rosenblatt estimator. For a set of n sample observations this will result in the
fundamental equation of the GRNN:

ŷ(x) = f̂(x) =

∑n
i=1 yi K

(
x−xi

h

)∑n
i=1K

(
x−xi

h

)
where K(·) is a kernel function and h is its smoothing parameter. As an in-
terpretation, ŷ(x) can be considered as a weighted average of all the observed
values yi, depending on the distance from the measurement of x.

3 Feature Selection Using Anisotropic General Regression
Neural Network

AGRNN is an evolution of the GRNN in which an anisotropic Gaussian kernel
function K(·) with a different bandwidth for each feature is used [4]. Hence, the
kernel assumes the form:

K

(
x− xi
h

)
= exp

(
d∑
j=1

−
(

(xj − xij)2

2σ2
j

))
where an Euclidean distance between points is applied and σj is the bandwidth
of the Gaussian kernel for the jth dimension.

A proper calibration of the bandwidths will scale the input features depend-
ing on their explanatory power. When the bandwidth of the lth variable grows,
its contribution to the regression function will tend to zero. Conversely, a small
smoothing parameter will give rise to a high discriminative power of the associ-
ated feature. This behaviour appears more clearly when considering the AGRNN
as a product of exponential kernels:

lim
σl→∞

p∏
j=1

exp

[
−
(

(xj − xij)2

2σ2
j

)]
=

p∏
j=1
j 6=l

exp

[
−
(

(xj − xij)2

2σ2
j

)]

Considering this property, we can define a criterion to select relevant features
with the use of AGRNN as follows. Let X = {X1, X2, . . . , Xj , . . . , Xd} be the set
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of d variables constituting an input space and Y be its corresponding response.
Given a vector Σ = (σ1, σ2, . . . , σj , . . . , σd) of the bandwidths minimizing the loss
function of an AGRNN, we say that the jth variable is relevant if σj is smaller
than or equal to a specific threshold, here fixed at 1 in the case in which the
features are normalized to the interval [0, 1]. Indeed, when σj > 1 the weights
defined by the Gaussian kernel will tend to assume the same small value for all
the training points, and the contribution of the jth feature to the regression will
become negligible.

The pseudocode for the AGRNN based Selector (AS) proposed in the previ-
ous lines is described in Algorithm 1.

Algorithm 1 AS

Input : A dataset X with features {X1, X2, . . . , Xj , . . . , Xd} and its corre-
sponding response Y .

Output: A vector Σ = (σ1, σ2, . . . , σj , . . . , σd) of the bandwidths; a dataset X̃
containing the relevant features.

1 Rescale each feature to [0,1].
2 Train an AGRNN to compute the optimal Σ.
3 for i = 1 to d do
4 if σj ≤ 1 then

5 Store Xi in X̃
6 end

7 end

Clearly, the identification of relevant feature through this AS is sensitive to
the training of the model, i.e. to the identification of proper bandwidth values.
In this research the Limited-memory BFGS method [6] has been used to solve the
σj optimization problem. A strong advantage of the AS compared to other FS
methods is that it studies all the features at once, considering their non-linear
interactions. Moreover, the different values of sigma can give an indication
concerning the relative importance of each feature. Although in this paper it is
used only to discriminate irrelevant features, the AGRNN can be used to solve
the regression problem. In this case, the value of the bandwidths acts as a weight
given to each feature, and irrelevant variables are automatically filtered out from
the regression as shown in the previous equations. At the same time, weakly
relevant features, either redundant or not, will be given higher bandwidth values
than the relevant features. Because of this peculiar behaviour, AGRNN can also
be considered as an embedded FS method.

4 Experimental Study

In this section we explore the behaviour of AS with two experimental case studies
with simulated and real datasets, respectively. All the computations have been
executed on an Intel(R) core i7-8700K 3.70GHz with 32 GB of RAM.
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4.1 Synthetic data

The simulated Butterfly dataset, introduced in [7], is constituted by one target
variable Y generated from two uniformly distributed inputs X1, X2 ∈]− 5, 5[ by
using a neural network with one hidden layer of 10 neurons and fixed weights.
Three more features are then generated as a combination of the two relevant
features: J3 = log10(X1 + 5), J4 = X2

1 −X2
2 and J5 = X4

1 −X4
2 . Finally, three

irrelevant features are added: I6 ∈] − 5, 5[ randomly sampled from a uniform
distribution, I7 = log10(I6 + 5) and I8 = I6 + I7.
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Fig. 1: Mean and 95% confidence interval for the optimal bandwidth values for
each feature after the optimization with the Limited-memory BFGS algorithm
over 100 generated datasets for different sample sizes (from left n = 2000, n =
5000, n = 10000). The red dashed line represents the threshold used for the FS.
Notice that the ordinate is in log-scale.

To study this dataset with the AS, 100 simulations were generated with
different sample size, specifically n = 2000, n = 5000 and n = 10000 and used
to test the sensitivity of the AS to the number of training points. For each
sample size AS has been performed to find the optimal bandwidths σopt for
each feature on each of the 100 generated datasets. Figure 1 shows the mean
and the confidence interval for the obtained bandwidths over the 100 repetitions
for the three investigated sample sizes. It is interesting to highlight, how, for
the butterfly dataset, the two relevant features X1, X2 are identified as the
ones having the smallest bandwidths independently from the number of training
points.

Another way to study the importance of the features, like in random forest
models, is to compare the results between original and shuffled features. There-
fore, we analyzed the behaviour of the σopt when the structure of one of the
variables is destroyed by shuffling. Figure 2 shows the results of the 100 ap-
plications of AS after the shuffling of a relevant, a redundant and an irrelevant
feature. Clearly, when a relevant feature is shuffled, the corresponding value of
the bandwidth surpasses the fixed threshold while the values of the redundant
features, specifically J3 and J4, tend to decrease. Differently, when the irrelevant
feature I6 is shuffled, almost no changes are reported in the optimal bandwidths.
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Fig. 2: Mean and 95% confidence interval for the optimal bandwidth values after
shuffling a relevant, a redundant and an irrelevant feature on a butterfly dataset
having n = 2000.

4.2 Benchmark data

The performances of AS have been compared with other well-known FS algo-
rithms. Specifically, we tested all the selected algorithms on four datasets. The
first one is a Friedman dataset [8] generated with 30 features of which only 5
are relevant. The other datasets have been downloaded from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/index.php). Specifically we
used the following datasets: Breast Cancer (n = 198, d = 31), California Hous-
ing (n = 2064, d = 8), Diabetes (n = 442, d = 10). Four comparison algorithms
were tested: Ftest, Mutual Information (MI), Correlation-based Feature Selec-
tion (CFS), ReliefF. To compare the performances of the different algorithms
we used an external evaluator model. The experiment was designed as follows.
Firstly, a FS algorithm has been applied to select the subset of features to test.
In the following, random forest (RF) has been used as a benchmark regressor.
To execute RF, data were split into training (80% of the observations) and test-
ing (20%). RF was trained performing a 5-fold cross validation. Finally, the
trained model has been used to perform a prediction on the testing data points
to compute the MSE. The RF modelling has been repeated 20 times to avoid
abnormal results due to data splitting. The entire procedure has been repeated
for each of the FS algorithm tested and for all the compared datasets.

Table 1 presents the results of the comparison. It can be easily pointed out
how the sets of features selected by AS provide mean errors in line or better
than those resulting from the application of the other algorithms, including
also ReliefF, which is usually considered as a standard in the benchmark of FS
algorithms.

5 Software availability

The algorithm for AS proposed in this paper has been implemented in Python.
The latest version is available on PyPi as pyGRNN.
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Dataset
Ftest MI CFS ReliefF AS

# MSE # MSE # MSE # MSE # MSE

Friedman 10 0.02(±0.001) 10 0.03(±0.001) 6 0.03(±8.01e − 5) 10 0.002(±8.36e − 5) 6 0.004(±5.51e − 4)
Breast 11 0.081(±0.010) 11 0.077(±0.009) 10 0.077(±0.011) 11 0.077(±0.009) 11 0.076(±0.013)
Calhouse 6 0.016(±0.001) 6 0.015(±0.001) 6 0.013(±0.001) 6 0.011(±0.001) 7 0.012(±0.001)
Diabetes 5 0.044(±0.004) 5 0.042(±0.004) 8 0.032(±0.003) 5 0.032(±0.003) 8 0.033(±0.003)

Table 1: Number of selected features, mean and standard deviation of the MSE
over 20 RF run for all the tested algorithms and datasets. For Ftest and MI
the number of selected features has been fixed equal to the number of features
selected through the ReliefF.

6 Conclusions

The AGRNN can be used to rank the features based on a distance/similarity
criterion, and the definition of a proper threshold allows the recognition of rele-
vant features. The main characteristics of the proposed FS approach have been
studied using simulated datasets, shuffling the features of the input space to de-
stroy their relevancy to the output, if any. The proposed approach has then been
compared with four other FS algorithms on four real world datasets downloaded
from the public accessible repositories. The performances appeared as good or
better as other algorithms in all case studies.

Future studies will investigate the behaviour of AS in higher dimensional
spaces, together with the possibility of using it to recognize features redundancy
or to perform multitask learning.
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