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Abstract.

DISTANA – a distributed spatio-temporal artificial neural network archi-
tecture – learns to model and predict spatio-temporal time series dynam-
ics. It learns in a parallel, spatially distributed manner while employing
a mesh of recurrent, neural prediction kernels (PKs). Individual PKs pre-
dict the local data stream and exchange information laterally. DISTANA
essentially assumes that generally applicable causes, which may be locally
modified, generate the observed data. We show that DISTANA scales and
generalizes to large problem spaces, can approximate complex dynamics,
and is robust to overfitting, outperforming other competitive ANNs.

1 Introduction

Modeling and predicting non-linear, spatio-temporal dynamics is challenging for
current pattern recognition systems [1]. Representative dynamics include, for
example, brain activities [2], video streams [3], traffic flow [4], and weather and
climate progressions [5, 6]. The major challenge is to infer, model, and predict
the underlying causes that generate the perceived data stream. A key property,
which all spatio-temporal processes have in common, is that the same underly-
ing causal principles—such as physics when observing natural processes—apply
irrespective of time or location. As a result, similar dynamics will be observable
repeatedly at different spatial locations and points in time.

DISTANA actively searches for these underlying causes in spatially dis-
tributed time series data. It learns a predictive, spatio-temporal, neural network
kernel (PK), which is applied to all nodes of a mesh. Thus, all nodes apply
the same operations at different locations. This enables efficient computation in
and learning from all nodes in parallel. Moreover, it predisposes DISTANA to
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identify the universal, recurring causes of the observed pattern dynamics. Com-
pared to seven other ANN models, including (temporal) convolutional neural
networks (CNNs, TCNs), recurrent neural networks (RNNs), and combinations
of both (e.g. ConvLSTM), DISTANA reaches both higher accuracy and robust-
ness at approximating circularly propagating waves. Moreover, it is critically
less prone to overfitting and bears the potential to handle heterogeneously dis-
tributed sensor meshes. In the near future we will apply DISTANA to related,
but more challenging real-world problems, such as modeling the partially chaotic
processes that generate our weather and climate.

2 DISTANA

While CNNs can efficiently and accurately process spatially distributed infor-
mation such as images, RNNs—and long short-term memory cells (LSTMs) [7]
in particular—are designed to handle time series data. Recently, Shi et al. [6]
proposed ConvLSTM—a convolution-gating architecture, which combines CNNs
and LSTMs, thus processing spatial and temporal information simultaneously.
GridLSTM [8], on the other hand, extends LSTMs to process not only temporal
but also spatial data dimensions sequentially.

DISTANA belongs to a third related class of architectures, which is referred
to as graph neural networks (GNNs) [9]. GNNs treat graph vertices and edges
in two different neural network components. Unlike earlier GNNs, however,
DISTANA integrates LSTM structures, projects the graph, i.e. its mesh, onto a
metrical space, and assumes universal causes underlying the observable spatio-
temporal data.

DISTANA consists of a PK network, which generates dynamic predictions at
each desired spatial location. Multiple PK instances, which share their respective
weights, are applied in a sensor mesh, enabling their parallel invocation. Each
PK instance receives (1) dynamic input, which is subject to prediction and
changes over time, (2) static information, which stays constant and characterizes
the location of each PK, and (3) lateral input from neighboring PKs. Typically
a PK contains recurrent connections.

3 Experiments

In two experiments, which differ in the data sets used, several ANN architectures
including fully connected networks, CNNs, and RNNs are compared with DIS-
TANA. We model a wave-like spatio-temporal process (cf. Figure 1) distributed
in a 16×16 mesh. Train and test errors are mean squared errors between network
output and target values, which are the dynamic inputs (e.g. wave height) at
the next time step. The test error is calculated over 65 time steps of closed loop
performance, where the network feeds itself with its own dynamic predictions
from the previous time step. The closed loop begins after 15 steps of teacher
forcing, which ground the recurrent activity in the network.
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Fig. 1: Data set one. Left: exemplary circular wave. Right: activity pattern
over time at one particular position in the two-dimensional wave field.

3.1 Data Set 1

Single sinusoidal waves are generated propagating outwards:

u(x, y, t) =

{
sin(rx,y − ct) exp(−d(ct− rx,y)) if rx,y < ct

0 else
, (1)

where u(x, y, t) is the wave height of the field at a certain position and time,
sin(rx,y − ct) defines the oscillating wave height considering the distance to the
wave center rx,y and the current time step t, and exp(−d(ct−rx,y)) causes waves
to decay away from the wave origin over time (decay factor d = 0.25). Constant
c = 10 is the wave velocity. Field values that have not been reached by the wave,
yet, are set to zero. The waves are not reflected at the borders.

Table 1 shows the performance of all compared models at approximating
these circular wave dynamics. Besides train and test errors, we report the num-
ber of parameters and the inference time of one sequence (consisting of 80 time
steps) for each model. In order to rigorously test all models for their generaliza-
tion abilities, we also trained them on one single sequence (one wave origin) and
computed the test error on unseen sequences (test error 1-train-ex.). Further-
more, to elaborate the models’ abilities to approximate variable dynamics, we
trained them on waves that travel with varying velocities (test error var. wave).
Spatial scalability, reported in the model descriptions below, indicates whether
a model can be directly applied to input fields of different resolutions.

Performances of the following models are compared:
Baselines: Baseline t− 1 is the identity function; Baseline zero predicts zeros.
Fully Connected Networks: A naive and spatially not scalable approach to
model the circular wave is a fully connected linear network (FC-Linear), with
16 × 16 = 256 cells, receiving the flattened input. A more elaborated model
is FC-LSTM, which replaces the linear layer of FC-Linear by a 256-cell LSTM
layer to facilitate temporal information processing.
CNN: To reduce the number of parameters, defining a spatially scalable model,
numerous CNN s with different kernel sizes, a varying number of feature maps,
and two convolutional layers were evaluated. The best results, which are re-
ported here, were achieved by using a kernel size of 3 × 3 and one feature map.
Temporal Convolution Network: TCNs, as a spatially scalable approach,
were applied with three 3D convolution layers, each with a 3 × 3 × 3 kernel and
[1, 8, 1] feature maps. Other settings did not seem to improve performance.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

305



Table 1: Performance measures of simple wave propagations on data set one.

Model (#pars) Train error Test error Inf. time 1-train-ex. Var. wave

Baseline t − 1 - 3.59 × 10−5 - 3.59 × 10−5 5.90 × 10−5

Baseline zero - 8.88 × 10−5 - 8.88 × 10−5 5.84 × 10−4

FC-Linear (65k) 2.36 × 10−4 2.56 × 10−4 0.0051 s 2.41 × 10−4 1.91 × 10−3

FC-LSTM (524k) 5.34 × 10−5 1.38 × 10−2 0.0113 s 2.14 × 10−3 6.57 × 10−3

CNN (20) 3.41 × 10−4 2.22 × 10−4 0.0115 s 1.37 × 10−3 2.66 × 10−2

TCN (2.3k) 1.17 × 10−5 8.56 × 10−3 0.0531 s 1.04 × 10−1 3.09 × 10−2

CLSTMC (768k) 6.28 × 10−5 4.67 × 10−1 0.0230 s 6.13 × 10−4 2.71 × 10−1

ConvLSTM1 (144) 1.83 × 10−5 4.26 × 10−5 0.0247 s 4.55 × 10−5 5.85 × 10−4

ConvLSTM8 (2.9k) 6.34 × 10−6 1.28 × 10−6 0.0298 s 1.29 × 10−2 7.88 × 10−4

GridLSTM (624) 7.95 × 10−5 3.62 × 10−1 5.8786 s 2.86 × 10−1 1.35 × 10−1

BiGridLSTM (1.8k) 6.28 × 10−6 5.65 × 10−1 11.9900 s 8.67 × 10−1 4.55 × 10−2

DISTANA4 (108) 4.18 × 10−5 2.08 × 10−5 0.0264 s 1.41 × 10−5 2.17 × 10−4

DISTANA26 (2.9k) 2.58 × 10−5 1.48 × 10−5 0.0326 s 2.04 × 10−5 9.99 × 10−5

CNN-LSTM-CNN (CLSTMC): CNNs were extended by inserting a fully
connected LSTM layer—making it not spatially scalable—after a variable num-
ber of layers. Best results were achieved with one 3 × 3 convolution followed by
a flat LSTM layer and a 3 × 3 transposed convolution with skip connection.
ConvLSTM: Two models of the spatially scalable ConvLSTM architecture,
both with two layers and kernel size three, are reported: ConvLSTM1 with one
feature map in both layers, and ConvLSTM8 with eight feature maps in the first
layer, which are reduced to one in the second layer.
GridLSTM and BiGridLSTM: GridLSTM runs forward in time and space;
BiGridLSTM processes data forward in time but bidirectionally over space.
Both are spatially scalable.
DISTANA: DISTANA is spatially scalable. PKs consist of a two-neuron tanh
layer, followed by a layer of either four or 26 LSTM cells and another two-neuron
tanh layer. This yields, for example, 108 = (2 · 2) + (2 · 4 · 4 + 4 · 4 · 4) + (4 · 2)
parameters for DISTANA4.

3.2 Data Set 2

To increase data complexity, a second set was created where waves are reflected
at borders, such that wave fronts become interactive. We focus our analysis on
the most promising architectures determined above. For wave data generation,
the two-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
(2)

was solved using the second order central differences approach to obtain an
equation for computing the state of the field at a desired position (x, y) in the
subsequent time step t + ∆t

u(x, y, t + ∆t) = c2∆2
t (uxx + uyy) + 2u(x, y, t) − u(x, y, t− ∆t). (3)
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Table 2: Same evaluation as in Table 1 on data set two, including TCN, Con-
vLSTM and three variants of DISTANA.

Model (#pars) Train error Test error Inf. time

Baseline t − 1 - 5.83 × 10−3 -

Baseline zero - 1.07 × 10−2 -

TCN (2.3k) 1.14 × 10−5 2.11 × 10−1 0.0707 s

ConvLSTM8 (2.9k) 3.52 × 10−6 8.09 × 10−2 0.0289 s

DISTANAv1 (146) 7.89 × 10−6 8.77 × 10−3 0.0280 s

DISTANAv2 (172) 1.37 × 10−6 7.68 × 10−4 0.0294 s

DISTANAv3 (200) 1.64 × 10−6 4.99 × 10−4 0.0301 s
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Fig. 2: Data set two. Left: exemplary circular wave with reflecting borders.
Right: network dynamics generated by selected architectures.

The unfolding dynamics of higher complexity are much harder to predict (cf.
Figure 2). None of the previously tested architectures was able to approximate
the dynamics satisfactorily (cf. Table 2) yielding errors larger than the baselines.
Accordingly, DISTANA was enhanced as follows:
DISTANA v1: The size of the preprocessing feed forward layer in the PK was
increased from two to four neurons.
DISTANA v2: Enhances DISTANA v1 with eight, compared to one, lateral
input neurons, which receive input from the eight neighboring PKs, respectively.
DISTANA v3: Enhances DISTANA v2 increasing the number of lateral output
neurons from one to eight, dynamically routing individualized outputs to the
respective neighbors.

DISTANAv2 and DISTANAv3 strongly outperform the simpler DISTANA
versions as well as TCN and ConvLSTM. Table 2 shows that DISTANAv2
reaches the lowest training error, while DISTANAv3 yields the best generaliza-
tion performance. Fig. 2 shows that when closed loop predictions unfold after
15 steps of teacher forcing, DISTANAv2 and DISTANAv3 approximate the tar-
get value still similarly well while the other ANN architectures start to strongly
deviate from the target values after only five to ten closed-loop prediction steps.
Online video material1 illustratively shows the further abilities of DISTANA,
including its ability to generalize to larger grid sizes.

1https://youtu.be/dH8qcBVuwFg
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4 Discussion

Several ANN architectures were compared at approximating spatio-temporal
processes. In the simple scenario, only ConvLSTM and our model, DISTANA,
yield smaller test errors than the two baselines when closed loop performance
over T prediction time steps is considered. This requires both intrinsic model
stability and the maintenance of plausible ongoing dynamics. While the reported
test error is in favor of ConvLSTM, DISTANA proved robust to few and variable
training data, even with a network that contains only 108 parameters. These
findings were corroborated by the evaluations in a second, more complex data
set, in which waves were reflected at borders and thus heavily interacted with
each other. All other considered architectures failed to generate lasting closed-
loop predictions, except for two variants of DISTANA, which consider lateral
information propagation explicitly (Figure 2).

Here we have considered regularly distributed grids. However, ongoing work
shows that DISTANA can indeed handle irregularly distributed sensor meshes
when introducing transition kernels. We thus expect to be able to scale to predict
heterogeneously distributed spatiotemporal data, as, for example, necessary to
generate highly accurate and further reaching short-range weather forecasts.

References

[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[2] Nikola K Kasabov. Neucube: A spiking neural network architecture for mapping, learning
and understanding of spatio-temporal brain data. Neural Networks, 52:62–76, 2014.

[3] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[4] Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm
network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport
Systems, 11(2):68–75, 2017.

[5] J. N. K. Liu, Y. Hu, Y. He, P. W. Chan, and L. Lai. Information Granularity, Big Data,
and Computational Intelligence, volume 8 of Studies in Big Data, chapter Deep Neural
Network Modeling for Big Data Weather Forecasting, pages 389–408. Springer, 2015.

[6] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-
chun WOO. Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 802–810. Curran
Associates, Inc., 2015.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[8] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. arXiv
preprint arXiv:1507.01526, 2015.

[9] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–
80, 2008.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

308


	Introduction
	DISTANA
	Experiments
	Data Set 1
	Data Set 2

	Discussion



