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Abstract.
The task of choosing the appropriate classifier for a problem is not an easy-to-
solve question due to the high number of algorithms available belonging to differ-
ent families. Most of these classification algorithms exhibit a degradation in the
performance when faced with many irrelevant and/or redundant features. Thus, in
this work we analyze the impact of feature selection in classification. Experimental
results over ten synthetic datasets show that the significance of selecting a classi-
fier decreases after applying an appropriate preprocessing step and, not only this
alleviates the choice, but it also improves the results in almost all classifiers tested.

1 Introduction

Classification is essential to data analytics, pattern recognition and machine learning.
It arises from the need of making predictions of a categorical variable, known as a
class variable, from one or more attribute variables which can be either categorical or
numeric. A data instance (e.g. a patient potentially having cancer) is characterized by
a number of independent variables (features), e.g. tumor markers (substances found
in the blood, urine, stool, other bodily fluids, or tissues of the patient). It also has a
response variable, e.g. whether the patient has a benign or a malignant tumor. When a
data analyzer or researcher faces the classification of a dataset, the objective is usually
to select the classifier which more probably achieves the best performance. However,
this is a hard task due to the high number of classifiers arising from many different
families. According to the No-Free-Lunch theorem, the best classifier will not be the
same for all the datasets [1]. Despite this, Fernández-Delgado et al. [2] presented an
exhaustive evaluation of 179 classifiers over 121 datasets. They stated that the classifiers
most likely to be the best were random forest and support vector machines. However,
Wainberg et al. [3] showed that the previous study’s results are biased by the lack
of a held-out test set and the exclusion of trials with errors, calling into question that
conclusion.

Theoretically, having more features should give more discriminating power. How-
ever, experimental evidence has shown that this is not always the case [4]. Decision
trees, such as C4.5, exhibit a degradation in the performance when faced with many
irrelevant features. Similarly, instance-based features, such as kNN, are also very sus-
ceptible to irrelevant features. It has been shown that the number of training samples
needed to produce a predetermined level of performance for instance-based learning
increases exponentially with the number of irrelevant features [5]. On the other hand,
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algorithms such as naive Bayes are robust with respect to irrelevant features, degrading
their performance very slowly when more irrelevant features are added [6]. However,
the performance of such algorithms deteriorates quickly by adding redundant features,
even if they are relevant to the concept.

For these reasons, researchers began to apply feature selection in a pre-processing
phase, with the goal of determining the “best” subset of features that accurately descri-
bes a given problem with a minimum degradation of the performance [7]. This arises
the question of which is the effect of feature selection in classification. Thus, in this pa-
per we analyze if the application of a good preprocessing step can alleviate the choice
of the classification algorithm and also if its impact improves the accuracy over ten
synthetic datasets.

2 Feature selection techniques

Feature selection methods have received a great deal of attention in the classification lit-
erature [8], which largely reflects filter, wrapper and embedded methods. The essential
difference between the first two is that the wrapper methods, unlike the filter methods,
make use of the classifier that will be used to build the final classifier. As for embedded
methods, these are generally used to classify machine learning models, with the classi-
fication algorithm building an optimal subset of features. Since wrapper and embedded
methods interact with the classifier, we opted for filter methods.

Filter methods evaluate the goodness of data subsets by observing only intrinsic data
characteristics and evaluating a single feature or subset against the class label. Below
we describe the five filters used in the experimental study (all implemented in the Weka
environment [9]).

• Correlation-based Feature Selection (CFS) is a simple multivariate filter algo-
rithm that ranks feature subsets according to a correlation-based heuristic evalu-
ation function [10]. This function is biased towards subsets containing features
that are highly correlated with the class and uncorrelated with each other.

• The Consistency-based Filter (CONS) evaluates the worth of a features subset
according to consistency in class values when training samples are projected onto
the features subset [11].

• The INTERACT (INT) algorithm is based on symmetrical uncertainty and it also
includes the consistency contribution [12].

• Information Gain (IG) filter evaluates the features according to their information
gain and and considers a single feature at a time [13].

• ReliefF (Rf) algorithm estimates features according to how well their values dis-
tinguish among the instances that are near to each other [14].
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3 Synthetic datasets

The first step to test the effectiveness of a feature selection method should be on syn-
thetic data, since the knowledge of the optimal features and the chance to modify the
experimental conditions allows to draw more useful conclusions.

The datasets chosen for this study try to cover different problems: increasing num-
ber of irrelevant features, redundancy, noise, alteration of the inputs, nonlinearity of the
data etc. These factors complicate the task of the feature selection methods, which are
very affected by them. Besides, some of the datasets have a significantly higher number
of features than samples, which implies an added difficulty for the correct selection of
the relevant features.

Table 1 shows a summary of the different problems covered by the synthetic datasets
employed, as well as the number of features and samples and the relevant features which
should be selected by the feature selection methods.

Table 1: Summary of the synthetic datasets. It shows the number of samples (#sam.),
the number of features (#feat.), the relevant features (#rel-feat.) and the number of
classes (#cl.), as well as the presence of correlation (#corr.), noise and no linearity. Gi

means that the feature selection method must select one feature within the i-th group of
features.

Dataset #sam. #feat. #rel-feat. Corr. Noise No linear #cl. Ref.
CorrAL-100 99 32 1-4 X 2 [15]
XOR-100 99 50 1-2 X 2 [15]
Parity3+3 12 64 1-3 X 2 [4]
Led-25 24 50 1-7 X 10 [16]
Led-100 99 50 1-7 X 10 [16]
Monk3 122 6 2,4,5 X 2 [17]
SD1 75 4020 G1, G2 3 [18]
SD2 75 4040 G1 −G4 3 [18]
SD3 75 4060 G1 −G6 3 [18]
Madelon 2400 500 1-5 X X 2 [19]

4 Experimental results

In this section, the results after applying five different feature selection methods over
ten synthetic datasets will be presented. While three of the feature selection methods
return a feature subset (CFS, CONS and INTERACT), the other two (IG and ReliefF)
are ranker methods, so a threshold is mandatory in order to obtain a subset of features.
In this work we have opted for retaining the top 10%, 20% and log2(n) [20] of the most
relevant features of the ordered ranking, where n is the number of features in a given
dataset. In the case of SD datasets, due to the mismatch between dimensionality and
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sample size, the thresholds selected the top 5%, 10% and log2(n) features, respectively.
We computed 5-fold cross validation to estimate the error rate.

The behaviour of the feature selection methods will be tested according to the classi-
fication error obtained by five different classifiers, each belonging to a different family.
The classifiers employed were: two linear (naive Bayes and Support Vector Machine
using a linear kernel) and three nonlinear (C4.5, k-Nearest Neighbor with k = 3 and
Random Forest). All five classifiers were executed using the Weka [9] tool, using de-
fault values for the parameters.

In order to check if the importance of choosing a specific classifier decreases after
applying a good preprocessing step, we analyzed the standard deviation of the classifi-
cation error obtained by the five classifiers. We consider that a lower value of standard
deviation represents a lower influence of the classifier selected. Thus, to explore the
statistical significance of our classification results, we analyzed the standard deviation
by using a Friedman test with the Nemenyi post-hoc test. Figure 1 presents the critical
different diagrams, introduced by Demšar [21], where groups of methods that are not
significantly different (at α = 0.10) are connected.
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(b) Non-linear classifiers

Fig. 1: Critical difference diagram showing the difference in terms of standard deviation
between the error obtained by the five classifiers over the ten synthetic datasets.

As we are dealing with synthetic datasets, the relevant features of each dataset are
known (Table 1). Thus, firstly we compared the results obtained by the classifiers over
the original datasets (All), i.e. without feature selection, and then the datasets with the
relevant features (Relevant). As can be seen in Figure 1(a), the classifiers perform better
on average over the datasets with only the relevant features but with no statistical signif-
icance over the classifier using the original data. However, three nonlinear problems are
tested: XOR-100, Parity3+3 and Madelon. Then, for these datasets, classification er-
rors obtained by linear classifiers (naive Bayes and SVM) are not taking into account in
Figure 1(b). As a result, statistical significance appeared between the two approaches,
which demonstrates our initial hypothesis.

However, we cannot trust that any feature selection method is able to select the re-
levant features, so the next step is to test the behavior of five different feature selection
methods as a preprocessing step before classification. Figure 2 shows that, although
not all the feature selection methods are statistically significant with respect to the re-
sults obtained over the version using all the features of the dataset (All), they always
outperform it.

Finally, we compared the performance of the feature selection methods over the five
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Fig. 2: Critical difference diagram showing the difference in terms of standard deviation
between the error obtained by the five classifiers over the ten synthetic dataset. IG/Rf-1,
IG/Rf-2, IG/Rf-3 refer to Information Gain/ReliefF filter using three different threshold.

different classifiers, trying to study which classification algorithm benefits more from
the preprocessing phase. As can be seen in Table 2, all the classifiers achieved lower
classification errors after applying feature selection except classifier C4.5. It has to be
noted that this classifier performs an embedded selection of the features; therefore, it
may be using a subset of features smaller than the given by the feature selection method.

Table 2: Average classification error. IG/Rf-1, IG/Rf-2, IG/Rf-3 refer to Information
Gain/ReliefF filter using three different thresholds. Lower errors obtained by the filters
versus the All approach are highlighted in bold.

CFS INT CONS IG-1 IG-2 IG-3 Rf-1 Rf-2 Rf-3 All
C4.5 39.95 38.87 40.53 48.68 38.95 39.30 48.80 45.00 40.44 38.64
NB 37.12 35.50 38.63 51.43 50.26 39.05 44.65 43.72 38.27 52.67
3-NN 41.84 41.27 43.83 53.11 44.59 39.21 47.64 51.80 42.34 47.30
SVM 41.20 39.20 40.24 49.67 47.63 39.25 43.76 44.58 42.38 51.77
RF 37.89 37.47 39.80 47.18 39.65 35.38 41.81 44.58 39.53 44.61

5 Conclusions

Feature selection has been an active and fruitful field of research in machine learning.
In this paper, we analyze the effect of this preprocessing task on classification over
ten synthetic datasets. The suite of synthetic datasets chosen covers phenomena such
as presence of redundant and irrelevant features, interaction between features or non-
linearity. In light of the results, we can conclude that: (i) the choice of a classifier is less
critical if we apply a good feature selection method before the classification task and
(ii) not only alleviates the choice but also improves the results in almost all classifiers.
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Moreover, the results obtained by Random Forest support the conclusions of its power
in previous studies [2, 3] and, in this case, specially thanks to the impact of feature
selection.

As future work, we plan to extend this study to other scenarios such as real datasets.
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