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Abstract.

Successful discriminative deep learning relies on large amounts of data and
proper domain coverage. We introduce an ensemble of recurrent genera-
tive modules, achieving robust and effective sequence classification facing
sparse data. Each module is an expert for only a few variations of a cer-
tain class. Given an input trajectory, the latent codes of the experts are
adapted via back-propagation of the reconstruction error and the most
accurate expert yields the class. In comparison with direct discrimina-
tive models, our approach achieves better classification rates with fewer
training examples, can be easily extended, and provides fully transparent
decisions.

1 Introduction

It is astonishing how fast we partially learn from few examples. For example, we
can easily recognize new objects and faces under various background or lighting
conditions. In contrast, learning to recognize and distinguish particular types
of objects with deep learning models relies on hundreds of thousands and even
millions of supervised example presentations and model adjustment steps. Fur-
thermore, the quality of such discriminative models and their robustness against
disturbances strongly depend on how well the training data covers the appli-
cation domain. Still, even well-trained models can be rather easily fooled [1].
In contrast, the brain is a predictive machine on many levels (cf. the predic-

tive mind [2] or predictive coding [3]). It constructs a generative model of the
encountered reality, instead of just processing the input in a forward pipeline
fashion. Even object recognition is a highly recurrent process [4].

In our recent work [5, 6], we have shown that adaptive, goal-directed behav-
ior and learning can unfold in generative forward models. These architectures
continuously predict future sensory signals and simultaneously reflect on the re-
cent past. They integrate active inference [7], event segmentation theory [8],
and predictive coding [3]. One particular insight is that temporal gradients can
be used to infer stable latent codes parameterizing the dynamic generator (cf.
parametric biases, e.g. [9]), such that it best explains the recently experienced
sensorimotor input history. As a result, event sequences and their boundaries
become encoded in a somewhat symbolic fashion [6].

This paper asks the question whether temporal gradient-based latent input
inference is applicable in regular sequence classification tasks, specifically when
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facing sparse data. Preliminary experiments indicated that overly complex re-
current generative models lead to a very irregular latent space and less useful
gradient signals. As shown elsewhere [10], an adequate pre-modularization with
low-complexity recurrent modules can dramatically improve the overall perfor-
mance.

We show that temporal gradient-based latent code inference enables the fit-
ting of the predictor’s dynamics onto unseen patterns. The system can recon-
struct previously unseen target sequences by adjusting its latent code by back-
propagating prediction error signals. Moreover, we demonstrate the effectiveness
of an ensemble of competing pattern-fitting modules for classification purposes,
comparing it with traditional recurrent neural networks (RNN) classifiers with
very few training data.

2 Classification using Generative Models

The basis of this paper is a recurrent generative model, which is trained to gen-
erate a few variants of a particular type of sequence (class), such as different
variants of one letter. The target variant is indicated via a latent input code
(one-hot encoding). Once the model is trained, it can be used to generate an
unseen sequence by iteratively adapting an initial latent input vector vτ via tem-
poral gradient information based on the error L between the currently generated
output sequence (unrolled from the current latent vector) and the given exam-
ple sequence, as shown in Figure 1. Over time, the output converges towards
the target. Our hypothesis is that if the considered model is an expert for the
presented example it will quickly find a generative latent code to approximately
generate the target, while this will hardly be possible for a non-expert model.

In order to perform classification, however, we established an ensemble of n
generative expert modules (EGEM)—one expert module per class. Specifically,
the modules are implemented using LSTMs [11] with ten units per network.
The individual modules are experts for their learned samples and can therefore
reconstruct plausible variations of them. A z-module, for example, is a bad ex-
pert for a ‘b’ target sequence. The error between the reconstruction and the
target is large, as exemplified in Figure 2. We control the size of the individual
modules—and thus their complexity—thus ensuring efficiency and keeping the
latent spaces simple and more stable. The final classification result is deter-
mined through competition within the ensemble, i.e., the expert with the best
reconstruction determines the class.

3 Experiments

The experiments were conducted on two trajectory datasets. The first dataset
contains handwritten digits (character trajectories data set) taken from the UCI
machine learning repository [12]. A character is represented as the sequence
of its coordinates over time. It contains only characters that can be written
in a single stroke, leading to 20 different classes with 2 858 example characters
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Fig. 1: Depiction of one expert module. The output is generated through the
RNN and the latent vector is adapted using the temporal gradient information.
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Fig. 2: Illustration of the ensemble-based classification. The experts generate
their best possible input reconstructions. The expert with the closest fit ’wins’.

in total. The sequences are padded to have the same length and are globally
standardized. The second dataset is MNIST, a well known, large database of
handwritten digits. Every example is represented as a 28 by 28 pixel gray scale
image, here normalized to the value range [0, 1]. In total there are 60 000 training
and 10 000 test images. In this application we used MNIST in a sequential
manner: every image is interpreted a sequence of 28 pixel rows of size 28.

Since we explore the low-data regime, we trained on only 80 samples for the
character dataset and 40 for MNIST, i.e. with only four examples per class. The
generative modules were trained for

We first compare performance of EGEMwith and without latent vector adap-
tion, by comparing performance between a zero latent vector and the latent
vector values generated by 50 iterations of gradient-based updates. Second,
we analyzed effects of training sequence selection. In some settings we might
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Table 1: Achieved accuracies for EGEM without noise (base), EGEM with noise,
a conventional forward LSTM classifier, and nearest neighbor (NN).

Dataset (method) MNIST Character sequences

clustered (EGEM base) 0.834 ± 0.020 0.791 ± 0.021
clustered (EGEM noise average) 0.874 ± 0.008 0.889 ± 0.014
clustered (EGEM noise best) 0.892 0.905
clustered (forward LSTM) 0.645± 0.015 0.620 ± 0.065
clustered (NN) 0.873 0.927

random (EGEM base) 0.525 ± 0.030 0.771 ± 0.025
random (EGEM noise average) 0.595 ± 0.028 0.834 ± 0.034
random (EGEM noise best) 0.643 0.9

random (forward LSTM) 0.480 ± 0.020 0.575 ± 0.112
random (NN) 0.586 ± 0.034 0.828 ± 0.023

full dataset (forward LSTM) 0.99 ± 0.0 0.978 ±0.006

encounter representative samples of a dataset, in others not. We simulated
representative sample selection by training with the K-Means clusters of each
class (with dynamic time warping-based distance measures), referred to as “clus-
tered” training samples. We compare performance with the one achieved when
randomly sampling data trajectories for each class.

Third, we add noise to input and output during training. The addition of
noise on the input was used to smooth the latent space. The noise was normally
distributed with different standard deviations. It was additionally clipped such
that every value lied between 0 and 1. When a recurrent generative model is
trained only on clean one-hot vectors, it is less likely to have a smooth latent
space. The addition of noise to the output was intended to make the model more
robust.

Lastly, EGEM was compared to conventional forward LSTMs (with 100 units
for MNIST and 200 units for characters), trained on the same data, and nearest
neighbor classifiers (NN). NN methods are, despite their simplicity, often the
most accurate techniques in the low data regime and therefore a good baseline.
We conducted every experiment five times and report averages and standard
deviations.

4 Results

First, we found that EGEM was able to reconstruct previously unseen sequences
reliably. Selected examples can be found in Figure 3. Its capability becomes
especially clear when some features of the target cannot be found in any of the
training samples, e.g., the bend in Target 2 of the characters dataset.

The results of the first subexperiment show that 50 gradient-based updates
of the latent vector code improve accuracy by 10%−20% on average and improve
the MSE significantly. The results of the other three subexperiments are shown
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Fig. 3: Reconstruction examples of single modules for MINST (left) and char-
acter trajectories (right). The upper row shows exemplary training sequences.
The second row shows some reconstruction targets, whereas the third row shows
the respective reconstructions including final latent vectors.

in Table 1. They show that on average (a) all methods perform better when
trained on representative samples compared to random ones; (b) the addition
of noise to the input is always increasing accuracy, while adding noise to the
output does so only sometimes; (c) EGEM is able to outperform a forward
model by large margins in all cases and beats the NN in three out of four cases.
Additionally, in the random case EGEM clearly outperforms NN. Since data
points in real application scenarios are unlikely to be clustered and very likely
to be random representatives, this strongly speaks in favor of EGEM.

5 Conclusion

This work has shown that iterative gradient based inference applied on an en-
semble of generative expert modules (EGEM) is a good method for sequence
classification, particularly when only few data instances are available for train-
ing. Expert modules that are able to reconstruct previously unseen patterns
of a respective sequence type unfold classification capabilities via a competition
process: the expert that best reconstructs the given input determines the la-
bel. In our experiments, EGEM outperformed conventional LSTM classifiers by
large margins. Further advantages of EGEMs are that they are easily extendable
and allow continuous, life-long learning by just adding further experts for new
classes. Moreover, the decisions made are fully transparent and can be retraced,
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which is essential when striving for explainable AI. To which extent EGEMs are
robust against adversarial attacks remains to be shown, but it is likely that the
generative aspect of EGEMs could be advantageous here as well.

A clear limitation is that more training data does not necessarily mean a
higher accuracy for EGEM. The generative model is likely to converge to one
class template, which averages over all presented training samples, thereby limit-
ing the effect of the gradient based method. However, strengthening the genera-
tive capabilities of the experts, e.g., by enhancing their representational richness,
could improve the overall performance. Overall, we see strong connections to
theories on event-predictive cognition [6, 13], where event-predictive inference
determines perception, allows for meaningful compositions of previously learned
knowledge, and the flexible and goal-directed generation of behavior. However,
more loose and emergent modularizations still need to be pursued.
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