
Attacking Model Sets with Adversarial Examples

István Megyeri1, István Hegedűs1 and Márk Jelasity1,2 ∗

1- University of Szeged, Hungary

2- MTA-SZTE Research Group on Artificial Intelligence, Hungary

Abstract. Adversarial input perturbation is a well-studied problem in

machine learning. Here, we introduce a generalized variant of this problem,

where we look for adversarial examples that satisfy multiple constraints

simultaneously over a set of multi-class models. For example, we might

want to force an entire set of models to make the same mistake over the

same example, in order to create transferable attacks. Or we might want

to fool just a single model, without fooling the rest of the models, in order

to target only a specific manufacturer. Known attacks are not directly

suitable for addressing this problem. The generated example has to satisfy

multiple constraints and no feasible solution may exist for any amount of

perturbation. We introduce an iterative heuristic algorithm inspired by the

DeepFool attack. We evaluate our method over the MNIST and CIFAR-

10 data sets. We show that it can find feasible multi-model adversarial

perturbations, and that the magnitude of these perturbations is similar to

the single model case.

1 Introduction

It has been known for many years that most machine learning models are sur-
prisingly sensitive to very small adversarial perturbations of the input [1, 2]. In
the original formulation of the problem, we are given a fixed model and a cor-
rectly classified example. The attacker wishes to find a minimal perturbation of
the example such that the model predicts any wrong label (untargeted attack)
or a given desired label (targeted attack). Since the seminal papers on this topic,
a large number of methods have been proposed to create better adversarial ex-
amples [3, 4] and to provide defense mechanisms [5, 6]. See [7] for a relatively
recent overview.

Here, we propose and study a more general version of this problem, where
we are given more than one model and an example. For each model, we specify
whether the given model should correctly classify the example or predict any
wrong label or predict a fixed specific label. This way, all the models specify a
constraint on the desired perturbation. We assume a white box scenario where
all the models are fully known.

This formulation allows for a wide variety of adversarial constraints on a
given model set. Here, we focus on two patterns of constraints with interesting
applications. In the first case, we wish to find an adversarial example such that
all the models predict the same wrong label. This is related to the problem

∗This study was supported by the National Research, Development and Innovation Office
of Hungary through the Artificial Intelligence National Excellence Program (grant 2018-1.2.1-
NKP-2018-00008), by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and
Technology, Hungary, and by the project “Integrated program for training new generation of
scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002, funded by
the European Union and co-funded by the European Social Fund.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

1

of finding adversarial examples for ensembles of models in the hope that these
examples would also fool additional unseen black box models [8, 9, 10]. Known
methods rely on the traditional setup where the ensemble is treated as a single
model that has to be fooled. Unlike our approach, it always allows for multiple
models in the ensemble to predict the correct label or even other inconsistent
labels, as long as the ensemble decision is fooled.

The second pattern we study involves fooling a single model from the set,
while making sure the rest of the models keep predicting the correct label. To the
best of our knowledge, this is a novel scenario. In a sense, this is the inverse of
the transferability problem, where we are looking for adversarial perturbations
that do not transfer to other models, in a well-controlled manner. An inter-
esting application is when an attacker wants to fool the product of a specific
manufacturer, while making sure all the other products work correctly.

Our multi-constraint adversarial problem cannot be tackled with existing
attack approaches directly. We propose an iterative optimization algorithm in-
spired by the DeepFool method [3]. We evaluate our method over the MNIST
and CIFAR-10 data sets. We show our approach can find feasible multi-model
adversarial perturbations, and that the magnitude of these perturbations is sim-
ilar to the single model case.

2 Algorithm

Let us first introduce our notations. We assume a set of multi-class models
f1, . . . , fm where fi : R

d → R
C . The models have C outputs that correspond to

the possible class labels. The classification of a given input x by a model fi is
given by ki(x) = argmaxj fi,j(x), where fi,j is the jth output dimension of fi.
We are looking for adversarial examples such that a given subset of the models
is fooled while the rest of the models are not.

The basic idea behind the algorithm comes from the DeepFool method [3],
where we also implement a heuristic iterative optimization algorithm based on
the first order approximations of the decision boundaries. However, unlike Deep-
Fool, we deal with several models targeted simultaneously by several different
attack patterns. Our algorithm is shown in Algorithm 1. We assume that we
are given an example x that is classified correctly by all the models. The models
in Ft have to be fooled while those in Fp must not be. The loop runs until this
goal is met. Within the loop, we ask for two perturbation steps: one that fools
all the models in Ft and one that makes sure that all of the models in Fp predict
the correct label. We apply the one with the larger norm. The idea is that this
way we first solve the harder problem and then gradually satisfy the rest of the
constraints.

A single iteration step is computed by Algorithm 2. The goal is to find a
perturbation for x such that all the models in F predict a common label c∗ ∈ C,
where F and C are parameters of Algorithm 2. In this version we present the
untargeted version of the algorithm where this common label is not given as
input, it can be arbitrary. The idea behind the algorithm is that for each label
and each model we compute one potential targeted step for the iteration like
the DeepFool iteration step [3]. We then pick the class label c∗ that minimizes

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

2

Algorithm 1 Multi-model adversarial perturbation

1: Input: example x, targeted models Ft, protected models Fp

2: Assumption: ∀fj ∈ Ft ∪ Fp : kj(x) = ĉ, where ĉ is the correct class of x
3: x0 ← x
4: i← 0
5: while i < imax and [∃fj ∈ Ft : kj(xi) = ĉ or ∃fj ∈ Fp : kj(xi) 6= ĉ] do

6: rt ← getStep(xi, {every class label except ĉ},Ft)
7: rp ← getStep(xi, {ĉ},Fp)
8: r ← rarg maxi∈{t,p} ‖ri‖2

⊲ the larger of rt and rp
9: xi+1 ← xi + r

10: i← i+ 1
return xi ⊲ the perturbed input

Algorithm 2 getStep

1: Input: example x, targeted classes C, targeted models F .
2: for c ∈ C do

3: for fi ∈ F such that ki(x) 6= c do ⊲ models predicting other than c
4: ŵi,c ← ∇fi,c(x)−∇fi,ki(x)(x) ⊲ ≈ direction to class c
5: wi,c ← ŵi,c/‖ŵi,c‖2 ⊲ ≈ normalized direction to class c
6: δi,c ← |fi,c(x) − fi,ki(x)(x)|/‖ŵi,c‖2 ⊲ ≈ distance to class c

7: mc = argmaxi δi,c ⊲ index of model with maximal distance to c

8: c∗ ← argminc δmc,c ⊲ class where maximal distance from ki(x) is minimal
return δmc∗ ,c

∗ ·wmc∗ ,c
∗ ⊲ perturbation towards making all F predict c∗ ∈ C

the maximal perturbation size over all the models. The maximal perturbation
vector corresponding to this class label (where the maximum is taken over the
models) is returned.

Note that there are several cases that we do not elaborate on here, for ex-
ample, when some of the sets are empty. These can be handled in a natural
way.

3 Experiments

We used the MNIST and CIFAR-10 data sets. The MNIST [11] data set consists
of grayscale 28×28 images of handwritten digits, from 0 to 9. The CIFAR-10 [12]
data set contains 32×32 RGB color images representing 10 classes of objects.
The main properties are shown in Table 1. The column “Consistently Classified”
is explained later on. As preprocessing, the features were normalized in both
data sets to the range [0, 1].

We created four model sets to test our multi-model attack method. Three
sets were created on MNIST. For each set, we fixed a network structure and used
eight different regularization parameters to train eight different weight sets for
the network. A fourth set was created on CIFAR-10, where we used one network
structure and eight different regularization parameters.

The three networks for the MNIST data set had one hidden layer of sig-

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

3

Table 1: Properties of data sets
Training Set Test Set #features (d) Consistently Classified

MNIST 60 000 10 000 784 7860/9180/9443
CIFAR-10 50 000 10 000 3072 4335

Table 2: Regularization coefficients used to create model set
0 1 2 3 4 5 6 7

MNIST 10 0 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2
MNIST 100 0 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3
MNIST 1000 0 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 5e-4
CIFAR-10 0 1e-5 1e-4 1e-3 2e-3 3e-3 4e-3 5e-3

moid neurons of size 10, 100 and 1000, respectively, and a softmax output layer.
On CIFAR-10 we trained a convolutional network with a shallow LeNet-like
architecture. It uses two blocks of two convolutional layers followed by max-
pooling, followed by two dense layers. Every layer has ReLU activation except
the last one, which has a softmax activation. The dimensions of the first four
convolutional layers of 3x3 filters, and the last two dense layers are (32x32x32),
(30x30x32), (15x15x64), (13,13,64), 512, and 10. This results in 1,250,858 pa-
rameters.

We used ADAM [13] as our optimizer with a minibatch size of 128 and a
stopping threshold of 10−10. The eight regularization parameters were different
for each network, as seen in Table 2. The reason is that we calibrated the range
so that the last setting is overly regularized.

The properties of the individual models in the model sets are shown in Fig-
ure 1 (left). We define robustness as the L2 norm of the untargeted adversarial

perturbation found by DeepFool, normalized by
√
d, where d is the input dimen-

sion. We normalize with
√
d because, in the case of image data, this way we

characterize the sensitivity of each pixel irrespective of the resolution of the im-
age, which is a more natural measure. Recall, that each input feature has a value
in the range [0, 1]. We can see that robustness is increasing with regularization
in all the cases, as expected.

The last column of Table 1 shows the number of test examples that were
correctly classified by all the models in the respective model set, in the case of
MNIST in the order of the 10, 100 and 1000 neuron hidden layers. Our multi-
model attack method was evaluated on these consistent examples only. For each
model set, we computed the adversarial perturbation for all these test examples
in 9 different scenarios. This includes targeting each of the 8 different models
in the model set individually while protecting the rest of the models (that is,
Ft = {fi} and Fp = {f0, . . . , f7} \Ft for i = 0, . . . , 7) as well as targeting all the
models simultaneously (that is, Ft = {f0, . . . , f7} and Fp = {}). The number of
iterations was limited by imax = 1000. We used the models without the softmax
activation, as was done in [3].

All the attacks were successful for all the examples, except in the case of
MNIST with 10 hidden neurons, where the number of examples on which the

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

4

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2

 3

 4

 5

 6

 7

M
N

IS
T

 1
0,

 a
cc

ur
ac

y

ro
bu

st
ne

ss
 (

x1
00

)

Single Model Statistics

training accuracy
test accuracy
test robustness

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 1

 2

 3

 4

 5

 6

 7

 8

 9

it
er

at
io

ns

ro
bu

st
ne

ss
 (

x1
00

)

Multi-Model Attack Statistics

iterations
test robustness

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2

 3

 4

 5

M
N

IS
T

 1
00

, a
cc

ur
ac

y

ro
bu

st
ne

ss
 (

x1
00

)
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2

 3

 4

 5

 6

it
er

at
io

ns

ro
bu

st
ne

ss
 (

x1
00

)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 3

 4

 5

M
N

IS
T

 1
00

0,
 a

cc
ur

ac
y

ro
bu

st
ne

ss
 (

x1
00

)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3

 4

 5

 6
it

er
at

io
ns

ro
bu

st
ne

ss
 (

x1
00

)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3 4 5 6 7
 4

 5

 6

C
IF

A
R

-1
0,

 a
cc

ur
ac

y

ro
bu

st
ne

ss
 (

x1
00

0)

regularization

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

all 0 1 2 3 4 5 6 7
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

it
er

at
io

ns

ro
bu

st
ne

ss
 (

x1
00

0)

target model

Fig. 1: Properties of the individual models (left), and multi-model attack statis-
tics, where the horizontal axis indicates the targeted models Ft (right).

attack was not successful ranged from 16 to 278 out of the 7860 consistent
examples, which amounts to an 0.2% to 3.5% error rate. The results are shown in
Figure 1 (right). The required number of iterations of our attack method is rather
small. Surprisingly, the CIFAR-10 model set requires much fewer iterations than
the MNIST sets despite it containing larger models.

Quite surprisingly, the multi-model perturbations are very similar in size to
those of the single model (DeepFool) perturbations shown in the left column.
This result was not anticipated, because the models differ only in the applied
regularization coefficient, so they are fairly correlated, which would suggest that
finding an adversarial example that fools one model but not the others is hard.
However, in all the model sets, even for the most robust model (with large
regularization) we can easily find an adversarial example with very small per-
turbation that does not fool the rest of the models. In the CIFAR-10 dataset,
the perturbation found for the “all targeted” case has a somewhat larger mag-
nitude than that for the other attacks. However, it is still an extremely small
(normalized) perturbation - amounting to less than 1.5% per input feature.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

5

4 Conclusions

We proposed an iterative algorithm to find small adversarial perturbations that
fool a given set of models simultaneously in a given pattern. This problem for-
mulation has several applications including the generation of transferable adver-
sarial examples, as well as non-transferable examples that target only a specific
model and ensure that the other models are safe.

The algorithm applies the first-order approximation of the decision bound-
aries used in the DeepFool method. We evaluated the algorithm on a number
of model sets over MNIST and CIFAR-10. We found that the algorithm consis-
tently produces small perturbations in all the cases we examined. Perhaps the
most interesting result is that small adversarial perturbations are present even
when a non-transferable adversarial example was generated for the most robust
model in the set, despite the fact that the models differed only in the regular-
ization coefficient. The generalization of the method and making improvements
to its convergence speed are under way.

References

[1] Ian J. Goodfellow and Jonathon Shlens Christian Szegedy. Explaining and harnessing
adversarial examples. In 3rd Intl. Conf. on Learning Representations (ICLR), 2015.

[2] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd Intl. Conf.
on Learning Representations (ICLR), 2014.

[3] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A sim-
ple and accurate method to fool deep neural networks. In The IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 2574–2582, June 2016.

[4] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, pages 39–57. IEEE Computer Society, 2017.

[5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In 6th Intl. Conf.
on Learning Representations (ICLR), 2018.

[6] Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In 6th Intl.
Conf. on Learning Representations (ICLR), 2018.

[7] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial examples: Attacks and defenses for deep
learning. IEEE Trans. Neural Networks and Learning Syst., 30(9):2805–2824, Sep. 2019.

[8] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversar-
ial examples and black-box attacks. In Proc. 5th Intl. Conf. on Learning Representations
(ICLR), 2017.

[9] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial ro-
bustness via promoting ensemble diversity. In Proc. of the 36th Intl. Conf. on Machine
Learning, (ICML), pages 4970–4979, 2019.

[10] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In Proc. 6th
Intl. Conf. on Learning Representations (ICLR), 2018.

[11] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. of the IEEE, 86(11):2278–2324, November 1998.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[13] Jimmy Ba and Diederik Kingma. Adam: A method for stochastic optimization. In 3rd
Intl. Conf. on Learning Representations (ICLR), 2015.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

6

