ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Compressive Learning of Generative Networks

Vincent Schellekens and Laurent Jacques *

ISPGroup, ICTEAM, UCLouvain, Louvain-La-Neuve - Belgium

Abstract. Generative networks implicitly approximate complex den-
sities from their sampling with impressive accuracy. However, because
of the enormous scale of modern datasets, this training process is often
computationally expensive. We cast generative network training into the
recent framework of compressive learning: we reduce the computational
burden of large-scale datasets by first harshly compressing them in a sin-
gle pass as a single sketch vector. We then propose a cost function, which
approximates the Maximum Mean Discrepancy metric, but requires only
this sketch, which makes it time- and memory-efficient to optimize.

1 Introduction

These last few years, data-driven methods took over the state-of-the-art in a
staggering amount of research and engineering applications. This success owes
to a combination of two factors: machine learning models that combine expres-
sive power and good generalization properties (e.g., deep neural networks), and
unprecedented availability of training data in enormous quantities.

Among such models, generative networks (GNs) received a significant amount
of interest for their ability to embed data-driven priors in general applications,
e.g., for solving inverse problems such as super-resolution, deconvolution, in-
painting, or compressive sensing to name a few |IH4]. As explained in Sec.[2) GNs
are deep neural networks (DNNs) trained to generate samples that mimic those
available in a given dataset. By minimizing some well-crafted cost-function at
the training, these networks implicitly learn the probability distribution synthe-
sizing this dataset; passing randomly generated low-dimensional inputs through
to the GN then generates new high-dimensional samples.

In generative adversarial networks (GANs) this cost is dictated by a dis-
criminator network that classifies real (training) and fake (generated) examples,
the generative and the discriminator networks being learned simultaneously in a
two-player zero-sum game [5]. While GANs are the golden standard, achieving
the state-of-the-art for a wide variety of tasks, they are notoriously hard to learn
due to the need to balance carefully the training of the two networks.

MMD-GNs minimize the simpler Maximum Mean Discrepancy (MMD) cost
function [6, 7], i.e., a “kernelized” distance measuring the similarity of generated
and real samples. Although training MMD-GNs is conceptually simpler than
GANs — we can resort to simple gradient descent-based solvers (e.g., SGD)
— its computational complexity scales poorly with large-scale datasets: each
iteration necessitates numerous (typically of the order of thousands) accesses to
the whole dataset. This severely limits the practical use of MMD-GNs |§].

*VS and LJ are funded by Belgian National Science Foundation (F.R.S.-FNRS).

429

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Fig. 1: General overview MMD-GN CL-GN
of our approach. The mo- Dataset 0]
ment matching of MMD- x — (5} ZC0oive o o= A E
GNs is replaced by sketch- mpiica P* X Sketching u
ing both X and the sam- ?

pling Pg. This compres- 0* € argmin D, (Px H'f’/;) 0* € argmin||zx — A(ﬁ(,)Hﬁ
sive learning approach of Latent space o 0 2

GNs (or CL-GNs) is al- @ — s /
lowed by relating the RFF _@_} @ & A E 4
frequency distribution A to b Generated " Sketching

the MMD kernel k. Pz GN samples H

Indeed, modern machine learning models such as GN are typically learned
from numerous (e.g., several million) training examples. Aggregating, storing,
and learning from such large-scale datasets is a serious challenge, as the re-
quired communication, memory, and processing resources inflate accordingly. In
compressive learning (CL), larger datasets can be exploited without demanding
more computational resources. The data is first harshly compressed to a single
vector called the sketch, a process done in a single, easily parallelizable pass over
the dataset [9]. The actual learning is then performed from the sketch only,
which acts as a light proxy for the whole dataset statistics. However, CL has
for now been limited to “simple” models explicitly parametrized by a handful of
parameters, such as k-means clustering, Gaussian mixture modeling or PCA [9].

This work proposes and assesses the potential of sketching to “compressively
learn” deep generative networks (MMD-GNs) with greatly reduced computa-
tional cost (see Fig. . By defining a cost function and practical learning scheme,
our approach serves as a prototype for compressively learning general generative
models from sketches. The effectiveness of this scheme is tested on toy examples.

2 Background, related work and notations

To fix the ideas, given some space ¥ C R? we assimilate any dataset X =
{x;}"_; C ¥ with n samples to a discrete probability measure Px, i.e., an em-
pirical estimate for the probability distribution P* generating X. Said differently,
x; ~iiq. P* and Px := \71| Z?:l O, , Where 0. is the Dirac measure at ¢ € X.

2.1. Compressive Learning: In CL, massive datasets are first efficiently (in one
parallelizable pass) compressed into a single sketch vector of moderate size. The
required parameters are then extracted from this sketch, using limited computa-
tional resources compared to usual algorithms that operate on the full dataset [9].

The sketch operator A(P) := \/1—% [Egp exp (1w?w)];n:1 realizes an embed-
ding of any (infinite dimensional) probability measure P into the low-dimensional
domain C™. This sketching amounts to taking the expectation of the ran-

dom Fourier features (RFF) [10] ®(x) := \/% exp(ifz) of & ~ P, with
Q= (w1, - ,Wn) € R*™ For large values of n, we expect that
A(P*) ~ zx = A(Px) =L 30" &(x;) € C™, (1)

430

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

where zx is the sketch of the dataset X. This sketch, which has a constant size
m whatever the cardinality of X, thus embeds Px by empirically averaging (or
pooling) all RFF vectors ®(x;). We still need to specify the RFF projection
matrix €2; it is randomly generated by drawing m “frequencies” w; ~jiq. A.
In other words, A(P) corresponds here to a random sampling (according to
the law A) of the characteristic function of P (i.e., its Fourier transform). By
Bochner’s theorem [11], A is related to some shift-invariant kernel x(x,y) =
K (x—y) by the (inverse) Fourier transform: K(u) = Ega eew’u = F-1 [A](w).

CL aims at learning, from only the sketch zx, an approximation Py for the
density P*, parametrized by 6§ € ©. For example, 0 collects the position of the K
centroids for compressive K-means, and the weights, centers and covariances of
different Gaussians for compressive Gaussian mixtures fitting. This is achieved
by solving the following density fitting (“sketch matching”) problem:

0* € arg mein lzx — A(Po)|l5 st. 0e€O. (2)

For large values of m, the cost in estimates a metric D, between 7/5X
and Py, called the Maximum Mean Discrepancy (MMD) [12], that is kernelized
by &, i.e., writing (P, Q) := Egp yuo k(2, y), the MMD reads

D%(P, Q) := k(P,P) + r(Q, Q) — 2x(P, Q). (3)

Using Bochner’s theorem, we can indeed rewrite as

) m iwlz iwly|2
IA(Px) — APo)l3 = 7 Xt | Epupy €% = Eyp, 7 Y|
~ Eyon |E '™ By p, 6« Y| = D2(Px,Py). (4)

:DNPX
Provided A is supported on R, D, (P, Q) = 0 if and only if P = Q [13]. Thus,
minimizing accurately estimates 73X from Py+ if m is large compared to the
complexity of the model; e.g., in compressive K-means, CL requires experimen-
tally m = O(Kd) to learn the centroids of K clusters in R<.

The non-convex sketch matching problem is generally solved with greedy
heuristics (e.g., CL-OMPR [14]). As they require a closed-form expression of
A(Py) and the Jacobian Vo A(Py), CL has so far be limited to cases where Py
is explicitly available and easy to manipulate.

2.2. Generative networks: To generates realistic data samples, a GN Gy« : 3, —
¥ (i.e., a DNN) with weights 6* € R% is trained as follows. Given 8 € O, we
compute the empirical distribution Pp := Gy (732) = Z?;l Go(z;) of n’ inputs
Z = {z;}?, randomly drawn in a low-dimensional latent space ¥, C R? from
a simple distribution P, e.g., z; ~iiqa. N(0,I,). By design, ’ﬁg is related to
sampling the pushforward distribution of P, by Gp. The parameter 6" is then set
such that 779»« ~ Px. While several divergences have been proposed to quantify
this ObJeCtIVE we focus here on minimizing the MMD metric D2(Px, Py) 16, [7].
Using (3) and discarding constant terms, we get the MMD-GNs fitting problem:

0" = argming Y., ez #(Go(20),G0(2))) — 25 ez ez K@i Gol2,)). (5)

431

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Li et al. called this approach generative moment matching networks, as
minimizing amounts to matching all the (infinite) moments of P and Q
thanks to the space kernelization yielded by « [15] (see Fig. [I).

If k is differentiable, gradient descent-based methods can be used to solve ,
using back-propagation to compute the gradients of Gy. However, for n true sam-
ples and n’ generated samples (or a batch-size), each evaluation of D?(Px,Pp)
(and its gradient) requires O(nn’ + n'?) computations. Training MMD-GNs,
while conceptually simpler than training GANs, is much slower due to all the
pairwise evaluations of the kernel required at each iteration — especially for
modern large-size datasets.

3 Compressive Learning of Generative Networks

In this work, given a dataset X, we propose to learn a generative network Gy
using only the sketch zx = A(Px) defined in (see Fig. . For this, given
n’ samples Z = {z; ~ P.}",, we solve a generative network sketch matching
problem that selects 0* = arg ming £(6; zx) with

L(O;zx) = ||A(73X) - A(%(ﬁz))”i =|lzx - & 7;1 ‘b(ge(zi))H; (6)

From (), we reach L£(6;zx) ~ D,.(Px ||Go(P2)) for large values of m, as
established from the link relating x and A. Compared to the exact MMD in ,
L(0; zx) is, however, much easier to optimize. Once the dataset sketch zx
has been pre-computed (in one single pass over X, possibly in parallel), we
only need to compute A(Gy(Pz)) (i.e., by computing n’ contributions z; —
®(Gy(z;)) by feed-forward, before averaging them) to compute the Euclidean
distance between both quantities. In short, we access X only once then discard
it, and evaluating the cost has complexity O(n'), i.e., much smaller than O(nn’+
n'?), the complexity of the exact MMD (f)) (see Sec. 2.2).

Equally importantly, the gradient Vo£(0; zx) is easily computed. With the

1
n’ =

residual r := zx — 1 ©(Go(z:)) and rH its conjugate transpose,

VoL(;2x) = =2+ 5 S R[rH (2500 wmto (e " 50 0)]. (7)

ou
partial derivatives of the m sketch entries with respect to the d dimension of

u € X, which is evaluated at the generated samples Gg(z;). The last term

Above, 22 — \/i—mdiag(emTu) Q is the m x d Jacobian matrix listing the

% € R¥do is computed by the back-propagation algorithm as it contains
the derivative of the network output Gy(z;) (for z; fized) with respect to the
parameters € R%. Algorithmically, the feature function ® amounts to an
extra layer on top of the GN, with fixed weights Q and activation t +— exp(it).
We can then plug those expressions in any gradient-based optimisation solverﬂ

ITo boost the evaluations of @, we can split Z into several minibatches Z; of size n; < n’;
is then replaced by successive minibatch gradients evaluated on the batches Z;. As reported
for MMD-GNs |6}, |7], this only works for sufficiently large ns, e.g., np = 1000 in Sec.

432

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

We conclude this section by an interesting interpretation of @ While CL
requires closed form expressions for A(Py) and Vg A(Py), our GN formalism
actually estimates those quantities by Monte-Carlo sampling, i.e., replacing Py
by Pp. This thus opens CL to non-parametric density fitting.

4 Experiments

For this preliminary work, we visually illustrate the effectiveness of minimiz-
ing @ by considering three 2-D synthetic datasets made of n = 10° samples (see
the top row of Fig. 2): (i) a 2-D spiral {(r;,¢;)}7_y, with ¢; ~ii.a. U([0,27))
and 7; ~iid. ;’7 +N(0,02), (i) a Gaussian mixture models of 6 Gaussians, and
(iii) samples in a circle, i.e., ¢; ~ U([0,27)) and r; ~ R+ N(0,02) for R and
o, fixed. We learn a GN mapping 10—dimensional random Gaussian vectors to
R?2, passing through seven fully connected hidden layers of 10 units each, acti-
vated by a Leaky ReLU function with slope 0.2. For this simple illustration, we
sketch all datasets to a sketch of size m = n/10 = 10*. We found experimen-
tally from a few trials that setting A to a folded Gaussian distribution (see [14])
of scale 02 = 1072 is appropriate to draw the m frequencies {‘-"j}}n:r From
those sketches, we then trained our generators according to @7 using the keras
framework. We fixed the number of generated samples to n’ = 10°, which we
split into mini-batches of n, = 1000 samples when computing the gradient.
Fig. 2| compares densities of generated samples and re-generated samples
after the training (from the known densities) through their 2-D histograms.
Note that while the datasets are simplistic, we restricted the training time to
a few minutes and, except for the frequency distribution, no hyper-parameter
tuning was performed. Despite a few outliers and missing probability masses,
the visual proximity of the histograms proves the capacity of our method to learn
complex 2-D distributions. Our code and further experiments are available at
https://github.com/schellekensv/CL-GN.

5 Conclusion

We proposed and tested a method that incorporates compressive learning ideas
into generative network training from the Maximum Mean Discrepancy metric.
When dealing with large-scale datasets, our approach is potentially orders of
magnitude faster than exact MMD-based learning. However, to embrace higher-
dimensional applications (e.g., for image restorations or large scale inverse prob-
lems), future works will need to (i) devise efficient techniques to adjust the
kernel k (i.e., the frequency distribution A) to the dataset X, and (i) determine
theoretically the required sketch size m in function of the dataset distribution
P*. Concerning the choice of the kernel, a promising direction consists in tun-
ing its Fourier transform A directly from a lightweight sketch [14]. As for the
required sketch size, this problem certainly relates to measuring the “complex-
ity” of the true generating density P*, and to the general open question of why
over-parametrized deep neural networks generalize so well.

433

https://github.com/schellekensv/CL-GN

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

~02 -1.00
-06 -04 -02 00 02 04 06 08 10 ~10 -08 -06 -04 -02 00 02 04 06 ~1.00 ~0.75 ~0.50 ~0.25 0.00 025 0.50 075 1.00

0.0
.. -0.50

-0.75

~02 ~1.00
-06 -04 02 00 02 04 06 08 10 ~10 -08 -06 -0.4 -02 00 02 04 06 ~1.00 ~0.75 0,50 —0.25 0.00 025 0.50 075 1.00

Fig. 2: Histograms (varying from white to black as the number of samples increases) of con-
sidered datasets (top) and 50000 generated samples, after training from the sketch (bottom).

References

[1] A. Bora et al. “Compressed sensing using generative models”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. 2017, pp. 537-546.

[2] M. Mardani et al. “Deep generative adversarial networks for compressed sensing auto-
mates MRI”. In: arXiv preprint:1706.00051 (2017).

[3] J. Rick Chang et al. “One Network to Solve Them All-Solving Linear Inverse Problems
Using Deep Projection Models”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2017, pp. 5888-5897.

[4] A. Lucas et al. “Using Deep Neural Networks for Inverse Problems in Imaging: Beyond
Analytical Methods”. In: IEEE Signal Processing Magazine 35.1 (2018), pp. 20-36.

[5] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information
processing systems. 2014, pp. 2672-2680.

[6] Y. Li, K. Swersky, and R. Zemel. “Generative moment matching networks”. In: Inter-
national Conference on Machine Learning. 2015, pp. 1718-1727.

[71 G. K. Dziugaite et al. “Training generative neural networks via maximum mean discrep-
ancy optimization”. In: arXiw preprint:1505.03906 (2015).

[8] M. Arjovsky et al. “Wasserstein GAN”. In: arXiv preprint:1701.07875 (2017).

[9] R. Gribonval et al. “Compressive Statistical Learning with Random Feature Moments”.
In: ArXiv e-prints (June 2017). arXiv: 1706.07180 [stat.ML].

[10] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In: Ad-
vances tn Neural Information Processing Systems 20. 2008, pp. 1177-1184.

[11] W. Rudin. Fourier Analysis on Groups. Interscience Publishers, 1962.

[12] A. Gretton et al. “A kernel two-sample test”. In: Journal of Machine Learning Research
13.Mar (2012), pp. 723-773.

[13] B. K. Sriperumbudur et al. “Hilbert Space Embeddings and Metrics on Probability
Measures”. In: J. Mach. Learn. Res. 11 (Aug. 2010), pp. 1517-1561.

[14] N. Keriven et al. “Sketching for Large-Scale Learning of Mixture Models”. In: ArXiv
e-prints (June 2016). arXiv: 1606.02838 [cs.LG].

[15] A. R. Hall. Generalized method of moments. Oxford University Press, 2005.

434

https://arxiv.org/abs/1706.07180
https://arxiv.org/abs/1606.02838

	Introduction
	Background, related work and notations
	Compressive Learning of Generative Networks
	Experiments
	Conclusion

