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Abstract. We present a web application to assist lab technicians with
the counting of different types of bacteria colonies. We use a Mask R-
CNN model trained and tuned specifically to detect the number of BVG+
(virulent) and BVG- (avirulent) colonies. We achieve a mAPIoU=.5 of
94 %. With these encouraging results, we see opportunities to bring the
benefits of improved accuracy and time saved to nearby problems and labs
such as generalising to other bacteria types and viral foci counting.

1 Introduction

Counting and differentiating between different types of bacterial colonies is a
key step in vaccine development,. It is a time-consuming and error-prone task
that prevents biologists from performing more meaningful and fulfilling work.
Several approaches have tried to avoid this manual counting using traditional
computer vision algorithms by thresholding Petri dish images into binary masks
of background and CFUs (Colony-Forming-Units), followed by post-processing
techniques to segment each CFU [1, 2, 3, 4]. These approaches often suffer from
a lack of multi-class CFU counting, poor performance on overlapping CFUs and
miscounting of agglomerated colonies. These approaches also require careful
calibration and good exposure conditions to properly exclude the background.

Recently deep learning approaches for CFU counting and other biomedical
image tasks became popular with the advent of image segmentation algorithms,
particularly thanks to the U-Net [5] architecture. For example [6] made use
of a classical convolutional neural network instance segmentation algorithm to
count CFUs, while [7] tackled CFUs counting with a U-Net architecture and
hosted their model in the cloud to make it directly available for users taking
pictures with mobile phones. [8] later trained a U-Net model to count colonies
of two different bacteria classes, which to our knowledge is the first attempt at
automation of multi-class CFU counting.

There are two main challenges faced when counting colonies using image seg-
mentation algorithms : 1) strongly imbalanced classes by nature : most pixels
are background, requiring carefully constructed loss functions in order to obtain
satisfactory colony pixels’ predictions ; 2)overlapping CFUs : separating CFUs
during post-processing of the colonies masks is often achieved based on same-
class-pixels’ connectivity. Therefore, as soon as two colonies of the same class are
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connected by one or more pixels, these CFUs are misleadingly considered as a
single colony. [8] attempts to address overlapping CFUs by labeling images with
an additional boundary class, breaking the connectivity of overlapping colonies.
Agglomerates of CFUs can then be separated with processing techniques. Un-
fortunately, this technique increases the data imbalance, as the newly introduced
class of boundary pixels is even less common than the CFU classes and as soon
as boundaries are not predicted perfectly, overlapping colonies are reconnected
and one can no longer distinguish the single entities of an agglomerate.

This paper addresses the two challenges described above by tackling the prob-
lem with an instance segmentation architecture. The latest major breakthrough
in the field of instance segmentation occurred in 2017 with the publication of
Mask R-CNN [9].

We believe that instance segmentation algorithms should be immune to im-
balanced classes and overlaying CFUs because they need not classify background
pixels, nor do they need to rely on a boundary class to make the distinction be-
tween overlapping objects. In this work, we develop a model using the robust
and efficient Matterport framework [10] and train on 101 GSK laboratory im-
ages of Petri dishes containing two types of bacterial colonies [8]. In addition to
building a performant CFU differentiator and counter, we seek to build a mod-
ern web application so that our model can be effectively used in production by
lab technicians to automate the counting as well as downstream related tasks.

2 Agile machine learning project

This project was conducted with end-users (lab technicians) in the loop from the
start. Two-week sprints keep stakeholders informed and give them the oppor-
tunity to easily adjust the direction and priorities of the project, and end-users
receive a working demo of the application immediately after the first sprint. This
way, we could let the demo live and update it as sprints progressed so that stake-
holders could continuously experiment with the application, providing valuable
feedback for us so as to go as fast as possible from a prototype to an effective
application. Below we describe the deep-learning aspects of the project.

We split the GSK dataset of Petri dish images gathered by [8] into train
(65 %), validation (15 %) and test (20 %) sets. Several key parameters were
adapted to fit the nature of our use case. One of those is the lengths of square
anchor sides. Indeed, in the RPN (Region Proposal Network), generating objects
bounding boxes proposals adapted to the sizes of the objects we seek to predict
in an application is key to successful training. For instance, BVG objects are
fairly small compared to the Petri dish images and compared to other object
recognition tasks. Training was performed iteratively as follows1 :

We first use a small, pre-trained backbone (ResNet-50) to speed-up the first
training iterations, where only network head layers are trained since the back-
bone has already learned to recognize useful features on the COCO dataset [11].

1Training was achieved on a single AWS p3.2xlarge machine, equipped with an NVIDIA
Tesla V100 GPU.
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We then unfreeze and train the backbone layers, which leads to good results on
training data but mediocre performance on some validation images, likely due
to the locations of CFUs on these images having never been seen in the training
set. We then augment the training set in various ways : stochastically rotating
images from -180 to 180 ◦, scalings, translations, and additive and multiplica-
tive noises. We also increase the number of (now randomly generated) images
to 500 per epoch 2. This leads to good model performance on the validation
set. We then trade our ResNet-50 backbone for a 101 coco pre-trained one. A
loss of performance is observed at first, as expected, but the model regains its
previous performance level after only a few epochs and results slightly improve
throughout the remaining epochs. We run a final training with more aggressive
augmentations to make our model able to generalize to images that are very
noisy, low contrast and taken from various angles and heights. This slightly
improves the model’s results even further up to a plateau on the validation set.

The left-hand side of Table 1 summarizes our best model’s results using
the average mAP (mean Average Precision) on IoU (Intersection over Union)
thresholds from 50 to 95 %, the mAP at IoU 50 and 70 %3 and MAPE (Mean
Absolute Percentage Error) on BVG- (avirulent), BVG+ (virulent) and all BVG
counts4. One can see that the mAP at a 0.5 IoU threshold is close to 100 %
(94.1 %) on the test set. Also, the overall MAPE (Mean Absolute Percentage
Error) on the test set demonstrates that on average, the total counts on a given
image is off by less than 3 %.

Table 1: Benchmarks (in percentage) of our best model without post-processing
(left) and with post-processing (right). The higher the mAP and the lower the
MAPE, the better.

No post-processing Post-processing

train val test train val test

mAP IoU=.50:.05:.95 58.3 51.9 50.7 58.2 51.0 50.6
mAP IoU=.5 97.1 97.6 94.1 96.8 96.3 93.8
mAP IoU=.75 63.5 47.5 50.5 63.2 46.8 50.6
MAPE BVG- 7.7 2.2 12.5 9.3 14.4 14.3
MAPE BVG+ 3.1 2.1 5.7 2.8 1.9 4.8
MAPE Tot 2.0 1.4 2.6 1.6 2.5 2.3

We add several post-processing steps in order to further refine the quality of
the results. First, we observe that the model is sometimes unsure about whether
an object is a BVG+ or BVG- and will typically generate two bounding boxes
and masks for both classes. In those cases, we remove the least likely object, and
mark the most likely one as unsure (BVG+ or BVG-) so that users can be easily

2This gives a good trade-off between training speed and backups of the model’s parameters.
3To benchmark the overall performance of instance segmentation models, as defined and

used in [11] challenges.
4To assess the quality of model on the actual counting use case (the lower the better).
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notified about that and validate or invalidate our guess. Second, CFUs on the
border of Petri dishes are typically discarded by counting procedure rules. We
implement this feature by spotting the Petri boundary (i.e., the corresponding
ellipse), shrink it slightly and exclude predictions which do not intersect or are
not included in this shrunk ellipse. Third, in rare cases, dust grains on a Petri
dish can be confused with CFUs. As dust grains are typically smaller than the
colonies, we exclude predicted objects whose area can be considered as an outlier
based on Laplace distributions percentiles computed for each image.

We search the space of these post-processing features parameters in order to
optimize model’s performance on train and validation sets. We particularly focus
on the total and especially the BVG+ MAPE as these are of utmost importance
for the end-users. The right-hand side of Tab. 1 shows our best model’s results
with the following post-processing steps applied to exclude the predicted BVGs
in the following cases : probability below 70 %, least likely of two objects of
different classes overlapping significantly (i.e. IoU > 70 %), outside of the
98 % version of the guessed ellipse delimiting the Petri dish, and outside of 99 %
confidence interval ([0.5 %, 99.5 %]) of the Laplace distribution computed on
areas of BVGs on the current Petri dish image. Compared to our model without
pre-processing (see left-hand side of Tab. 1, we can see performance gains mainly
showing on the MAPE, decreasing from 2.6 % to 2.3 % and from 5.7 % to 4.8 %
for the total and BVG+ counts on the test set, respectively. This is achieved
at the minor cost of a slight decrease in mAP performance (94.1 % to 93.8 %),
again on the test set. Tables 2 and 3 show the original and normalized confusion
matrices on the test set, respectively.

As instance segmentation algorithms can predict non-existing objects or miss
existing ones, an additional empty class is added. The intersection of these
additional row and column (i.e. the last matrix element) always remains empty
as non-predicted non-existing objects never occur. Furthermore, conversely to
non-diagonal elements of standard classes, the Nothingness elements, i.e. Missed

or Invented objects, should be as low as possible as one never seeks to miss/invent
existing/non-existing objects. With this in mind, one can see in Tab. 3 very few
colonies get misclassified with less than 2 and 7 % of actual BVG+ and BVG-,
respectively. Also, one can note that actual BVG+ are less often confused with
BVG- (0.5 %) than the opposite (4.8 %). Moreover, the model misses or invent
twice as much BVG+ than BVG-, i.e. 3 to 6 and 2 to 4 (see Tab. 2). Because
the proportion of BVG+ is more than twice bigger than the BVG- counterpart,
this shows the model actually invents or misses less BVG+, relatively.

Table 2: Confusion matrix on test set

BVG- predicted BVG+ predicted Missed

BVG- actual 78 4 2
BVG+ actual 2 395 4
Invented 3 6 .
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Table 3: Normalized confusion matrix on test set (in %)

BVG- predicted BVG+ predicted Missed

BVG- actual 92.9 4.8 2.4
BVG+ actual 0.5 98.5 1.0
Invented 33.3 66.7 .

Fig. 1: Test data (left) and our corresponding best model’s predictions (right)

Fig. 1 shows some examples of predicted CFUs on our test set with our best
model. The overall visual inspection of the figure is promising. Most CFUs are
spotted by the model and correctly classified. We can see most of the errors arise
from CFUs on the image’s border. One of our post-processing steps identifies
the Petri dish border and only includes predictions within a 98 % reduced ellipse
of the border. The reason not to further reduce the ellipse lies in the fact that
images are taken from, and slightly asymmetrically cropped by, the aCOLyte5.
This results in some images not completely encompassing some borders of the
Petri dish. For instance, this is particularly flagrant on the bottom and left
borders of the images presented in Fig. 1. Hence, using a greatly reduced ellipse
of the border would lead to miss legitimate BVGs on the top and right borders.
As a short term solution, we will display a conservative boundary ellipse and let
the users change this to accommodate the asymmetric cropping of the images.

3 Conclusion and future work

We presented a Mask R-CNN model tuned and trained to count BVG- and
BVG+ CFUs. This approach solves the imbalanced class problem discussed

5aCOLyte (Synbiosis, Cambridge, UK)is a hardware often used in CFU experiments.
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above and significantly alleviates the problem of overlapping CFUs. Data aug-
mentation, in particular rotations, is key to getting good performance with very
few training examples. Slight improvements in the predictions quality could be
achieved with a little more and better labelled data, although current results
are already satisfactory to the operators. Another add-on could be setting-up a
user-friendly interface embedded in our app so users can annotate new datasets.
This would in turn facilitate the training and generalization to other species of
bacteria. Finally, the areas of colonies are already computed and could later on
be used to better estimate the actual quantity of bacteria in dishes.

4 Disclosure

This work was sponsored by GlaxoSmithKline Biologicals SA. All authors were
involved in drafting the manuscript and approved the final version. The authors
declare the following interest: GDL and PS are employees of the GSK group of
companies and report ownership of GSK shares and/or restricted GSK shares.
TN, LS, MH are employees of Radix.ai.

References

[1] Paul R Barber, Borivoj Vojnovic, Jane Kelly, Catherine R Mayes, Peter Boulton, Michael
Woodcock, and Michael C Joiner. Automated counting of mammalian cell colonies.
Physics in Medicine & Biology, 46(1):63, 2001.

[2] Maximilian Niyazi, Ismat Niyazi, and Claus Belka. Counting colonies of clonogenic assays
by using densitometric software. Radiation oncology, 2(1):4, 2007.

[3] Silvio D Brugger, Christian Baumberger, Marcel Jost, Werner Jenni, Urs Brugger, and
Kathrin Mühlemann. Automated counting of bacterial colony forming units on agar
plates. PloS one, 7(3):e33695, 2012.

[4] Angelo Torelli, Ivo Wolf, Norbert Gretz, et al. Autocellseg: robust automatic colony
forming unit (cfu)/cell analysis using adaptive image segmentation and easy-to-use post-
editing techniques. Scientific reports, 8(1):7302, 2018.

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing

and computer-assisted intervention, pages 234–241. Springer, 2015.

[6] Alessandro Ferrari, Stefano Lombardi, and Alberto Signoroni. Bacterial colony counting
with convolutional neural networks in digital microbiology imaging. Pattern Recognition,
61:629–640, 2017.

[7] Hong-Ye Lin, Szu-Yu Chen, Chia-Lin Chung, and Yan-Fu Kuo. Counting bacterial colony
on agar plates using deep convolutional neural network. In 2019 ASABE Annual Inter-

national Meeting, page 1. American Society of Agricultural and Biological Engineers,
2019.

[8] Thomas Beznik. Deep learning approach to bacterial colony detection. Master’s thesis,
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