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Abstract. We have analyzed the training of Boltzmann machines under
the perspective of statistical physics. We argue that training models in
spin-glass regime is highly inefficient and unnecessary. To that end, pre-
viously we have presented RAPID, a method to control the frustration of
spin models and to train them without the need of expensive sampling
methods. In this contribution we study effects of initialising Boltzmann
machines in easily sampling regime and training with standard methods.

1 Introduction

One of the most important models in unsupervised learning are Boltzmann ma-
chines (BMs) [1]. Training of Boltzmann machines requires calculating a set of
averages with respect to data and model for every learning step. In general, the
these averages cannot be computed exactly for large models due to their large
dimensionality, but they can be estimated by sampling through Markov chain
Monte Carlo (MCMC) methods. Unfortunately, the sampling of BMs is hard
and MCMC algorithms are numerically costly. At present, the most popular
BMs are restricted Boltzmann machines (RBMs) with only one layer of hid-
den neurons and no intra-layer connections. This architecture usually allows for
acceptable learning by means of simple MCMC-based algorithms such as Con-
trastive Divergence (CD). Improving sampling offers huge learning benefits and
more numerically demanding methods, like Persistent Contrastive Divergence
(PCD) [2] and Population Annealing [3], have been developed to this end.

From the point of statistical mechanics any BMs initialised in a standard
way is equivalent to Sherrington-Kirkpatrick spin-glass (SKSG) model [4]. We
identify such initialisation in the SK spin-glass regime as unncecesary bottleneck
in training of Boltzmann machines. In recent paper [5] we taken a radically
different approach: we regularized the couplings in the Boltzmann machine in
order to avoid a spin-glass behavior at any point of training. We also used
a new sampling technique, related to that regulariation. We shown that the
proposed method allows for efficient learning and generalization. Furthermore,
we shown an improvement in training speed of orders of magnitude.In present
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contribution we study initialisation of RBMs in non-SKSG regime in conjunction
with standard CD and PCD learning algorithms.

2 RAPID: Regularized Associations and Pattern-InDuced
correlations

In this section we briefly recapitulate basics of our method. We start by recalling
the standard Boltzmann machine, which consists of N binary neurons σ (here
we use values σj = ± 1 which are standard in physics of spin systems), which
can be separated into disjoint sets of visible and hidden neurons, σ= (v,h).
An energy is associated to every configuration of neurons σ via an energy
function, Eθ(σ) = −

∑N
ij Wijσiσj −

∑N
i biσi, where the weights Wij describe

neuron-neuron connections, or associations, and bi are local biases. The prob-
ability of having a visible configuration v is given by a Boltzmann distribution
Pθ(v) =

∑
h e
−Eθ(σ)/

∑
σ e
−Eθ(σ). Since the main problems we discuss are re-

lated to the distribution of weights Wij , in the following we will neglect the biases
bi. The goal of training is to determine the parameters θ such that Pθ represents
as close as possible the distribution P data underlying some dataset T . For that
minimizing the negative log-likelihood, Lθ = −

∑
v∈T P

data(v) logPθ(v), with

respect to the parameters of the model is usually employed. As P data is inde-
pendent of these variables, the minimization is only performed to logPθ(v). The
derivative of this terms takes the form ∂Wij

logPθ(v) = 〈σiσj〉data−〈σiσj〉model,
where the bracket 〈·〉 denotes the expectation value with respect to either the
training data in T or the model given by Pθ.

2.1 Regularized Associations

The SG phase is related to the so-called spin frustration, which occurs when
there is no configuration that minimizes the energy of all interactions at the
same time. With increasing frustration, the number of low energy minima
grows exponentially [6]. Mattis solved the frustration problem in a very sim-
ple model [7]: choose one configuration (or pattern) ξ ∈ {−1, 1}N at random,
and define Wij = ξiξj . The unique ground state of the spin model defined by
such couplings is ξ. Here we employ a generalization of Mattis’ approach, where
the weights are constructed from an arbitrary number K of patterns ξ(k):

Wij =
1√
K

K∑
k=1

ξ
(k)
i ξ

(k)
j . (1)

The form of the weights in Eq. (1) is well known in machine learning from
the Hopfield model of associative memory [8, 9]. Although a main focus in the
Hopfield model is on retrieval of fixed patterns from dynamics of neural networks
instead of generalising data distributions (the case of BMs), both models are
closely related [10]. The number of independent patterns that can be faithfully
retrieved from a Hopfield model was thoroughly studied in [11]. For very low
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temperatures, the Hopfield model is in “retrieval phase” ifK/N < 0.12 and in the
spin-glass phase where patterns cannot be faithfully retrieved for K/N > 0.12.
Following those results, for a given training data problem, we experimentally
choose K high enough to faithfully represent the data probability distribution,
but keeping the ratio K/N below the threshold that will lead to a spin-glass
behavior. In the case of RBMs, this ratio can be lowered arbitrarily for a desired
number of patterns K by increasing the number of hidden neurons accordingly.

2.2 Training via Pattern-InDuced correlations

As mentioned above, it is easy to characterize spin models with weights of the
form of Eq. (1) whenever one has a small number of patterns K: in fact, when
K�N the patterns ξ(k) are low-energy configurations themselves. A conse-
quence of this is that the model averages required for training, 〈σiσj〉model, can
be well approximated by

〈σiσj〉model ≈
1

K

K∑
k=1

ξ
(k)
i ξ

(k)
j . (2)

This suggests a natural procedure for minimizing Lθ: first, choose K�N
random patterns and compute the model’s weights via Eq. (1); second, compute

the derivatives of Lθ with respect to each individual pattern component ξ
(k)
i and

replace all averages over the model by averages over the patterns, as in Eq. (2);

third, update ξ
(k)
i according to such gradients, and from them recompute new

valid patterns.
We note that such procedure does not need any MCMC sampling, and this

already gives good results in learning simple datasets. However, we have ob-
served that when learning more complex datasets the best results were obtained
when training with PID was complemented with a few steps of Gibbs sampling
of the patterns ξ(k).

3 Results

3.1 Training of RA-initialised machines

Previously we demonstrated superiority of RAPID over standard RBMs trained
with CD or PCD showing importance of spin-glass control in BMs. However
this begs a question - what will be preformance of RBM initialised out of SKSG
and trained with PC or PCD. To this end we studied RA-initialised CD or PCD
trained RBMs i.e. weights are initialised with RA recepie but after that patterns
are not used at all and weight are changed with CD or PCD procedure.

We are studying of learning a small dataset, consisting of 4× 4 images with
full vertical stripes. The dataset contains a total of 16 inequivalent images.
While this number of visible neurons in this data set may seem small, it allows to
compute exactly the ground state for RBM with any number of hidden neurons
(and here we use 1000 hidden). This in turn allows to compute the Gibbs
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sampling accessibility: For given machine we perform 10 Gibbs sampling steps
starting from random configuration and record lowest energy of encountered
configurations. The ratio of such energy to the ground state energy is a measure
of accessibility of low energy configurations during sampling.

In this dataset we contrast RAPID with training RA-initialised and SKSG-
initialised RBMs trained with standard methods, namely CD and PCD with 10
steps of Gibbs sampling and (in the case of PCD) 2048 fantasy particles.

(a)

100 101 102 103

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Ha
m

m
in

g 
di

st
an

ce

Test set

PC-NRA
PC-RA
CD-NRA
CD-RA
RAPID

(b)

100 101 102 103

Epoch

0.2

0.4

0.6

0.8

1.0

Gi
bb

s a
cc

es
ib

ilit
y

PC-NRA
PC-RA
CD-NRA
CD-RA
RAPID

Fig. 1: Training of RA initialised RBMs. (a) Hamming distance between re-
constructions of partial images and expected results in the test sets of the 4× 4
Bars dataset. NRA denotes standard initialisation in spin-glass regime. (b)
Gibbs sampling accessibility. In all cases, the models tested have H = 1000 hid-
den neurons, and are trained in the 4× 4 stripes dataset. For the case training
with RAPID (in blue), we employ K = 8 patterns).

To perform an accuracy test on the machines, we reconstruct corrupted im-
ages from the dataset. Then, we compute the Hamming distance (HD) between
the reconstructed and the original image. In Figs. 1a we present results for
the HD when reconstructing image from the training and test sets, respectively.
As reported previously RAPID allows to learn the dataset in a surprisingly
small number of epochs (∼20 epochs) compared to the SKSG-initialised RBMs
trained with CD or PCD methods (O(103) epochs). However unexpectedly
RA-initialised RBMs trained with CD or PCD methods perform worse than
SKSG-initialised ones although sampling in RA-initialised RBMs is greatly im-
proved. To understand this we checked Gibbs sampling accesibility, presented
on Figs. 1b. The SKSG-initialised machines start with very poor sampling and
gradually go out of SKSG regime during learning. However RA-initialised RBMs
enjoy perfect sampling, similar to RAPID. Their poor performance is associated
with what we called ”mirroring effect”.

3.2 Mirroring effect

The mirroring effect occurs when any visible configuration after one-step Gibbs
sampling remains in large part unchanged. It is closely related to, well known in
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statistical physics, Onsager correction field in cavity method. Onsager realised
that in a spin systems with long-range interactions, in the paramagnetic phase,
the given spin orientation will slightly polarise other spins interacting with it. If,
due to long-range interactions or large dimensionality, the number of such spins
will be large the effective local field acting on polarising spin will substantially
favour starting orientation. In terms of learning such fields can be problematic,
hampering any training method based on Gibbs sampling. The problem is most
important in the very begining phase of training. Once the network learns
something the mirroring of random patterns is much weaker than reconstruction
of learned features.

We observed mirroring effect for SKSG-initialised RBMs when number of
hidden units was around 5000. It occurs that for RA-initialised RBMs the
strong mirroing effect happens already for 1000 hidden. This is probably related
to the lower frustration, as suggested by analytical results which we obtained
for unfrustrated Mattis system.

In Fig. 1 we present results of mirroring effect (panel (a)) - the lower Ham-
ming distance the stronger mirroring effect. On panel (b) we show also the
evolution of local fields for RAPID and SKSG-initialised RBMs trained with
CD or PCD. Interestingly one can observe a convergence of the latter to the
RAPID - strengthening hypothesis formulated in previous paper that RAPID is
the model of a well trained BM.
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Fig. 2: Mirroring effect: (a) Hamming distance between random configuration
and it one-step Gibbs sampling follower, for RA-initialised RBMs. In all cases,
the models tested have H = 1000 hidden neurons, and are trained in the 4× 4
stripes dataset. For the case training with RAPID (in blue), we employ K = 8
patterns) (b) Distribution of local fields acting on visible neurons obtained after
one-step Gibbs sampling of random image, for RAPID and SKSG-initialised
RBMs. Sign of field denotes it direction in respect with visible spin. Colors
denote different epochs.
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4 Conclusions

We observed that simply initialising Boltzmann machine in non-spin-glass regime
brings radical improvement of sampling, strengthening our claim that train-
ing models in spin-glass regime is highly inefficient and unnecessary. However
reduced frustration may increase mirroring effect hampering training methods
based on Gibbs sampling. This problem of course does not concerns RAPID
since sampling in this method is based on patterns.
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