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Abstract. Multi-target regression is a special subset of supervised ma-
chine learning problems. Problem transformation methods are used in the
field to improve the performance of basic methods. The purpose of this
article is to test the use of recently popularized distance-based methods,
the minimal learning machine (MLM) and the extreme minimal learning
machine (EMLM), in problem transformation. The main advantage of the
full data variants of these methods is the lack of any meta-parameter. The
experimental results for the MLM and EMLM show promising potential,
emphasizing the utility of the problem transformation especially with the
EMLM.

1 Introduction

Multi-Target Regression [1, 2] (MTR) refers to a machine learning problem where
multiple real-valued target variables are predicted at once with a given input.
Prime example of MTR is the Multi-Target Classification (MTC) problem where
an input vector is linked to the membership in multiple different classes. MTR
and MTC are subfields of Multi-Output Learning which has been an active field
of research recently [3]. Although MTR has an increasing number of interesting
applications, the most focus in the field has been in MTC problems [2].

If a regression method, e.g., the support vector machine, does not pose an
inherent capability to build a model for multi-targets, the so-called Problem
Transformation [1, 2] (PT) methods can be applied for the extension. The
most common and straightforward problem transformation method, the Single
Target (ST) method, builds a separate model for each target variable. Lately,
the popular problem transformation methods from MTC were adapted to MTR
[1]. Based on the extensive experimental and theoretical evaluation in [1], the
Stacked Single-Target (SST) and the Ensemble Regressor Chains (ERC) com-
bined with the cross-validation based extension of the input dataset were con-
cluded to improve the prediction accuracy compared to the ST approach. The
common idea here is to form first stage models with the ST approach and then
use the predictions of these models to form an extended input dataset (meta-
dataset). This enlarged data is then mapped back to the original targets with
a second stage ST model. Naturally, the base regressor that is used in the ST
approach in SST and ERC affects to the computational cost and accuracy of the
whole extended model.
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Lately, two distance-based supervised learning methods have been proposed
for classification and regression: the Minimal Learning Machine (MLM) [4] and
the Extreme Minimal Learning Machine (EMLM) [5]. Both of these models pos-
sess attractive characteristics that suggest testing their use as the base regressor
for SST and ERC. Similar to the Extreme Learning Machine, MLM and EMLM
have simple formulation, one hyperparameter, and good trade-off between the
accuracy and computational cost. Differently to ELM, tuning hyperparameter
for MLM and EMLM is mostly an issue to balance the computational cost and
the generalization accuracy [6, 5]. Therefore, nonparametric full data variants
of the MLM and EMLM methods enable their straightforward use in SST and
ERC, especially because one of the main reasons for the popularity of these
formulations in MTC is their simplicity [1].

2 Methods

Here we briefly describe the basics of problem transformation and distance-based
regression methods.

2.1 Problem Transformation

In MTR, the goal is to learn a mapping f between the input data X = {xi}Ni=1

and the output data Y = {yi}Ni=1, where xi ∈ R
M , yi ∈ R

L and L > 1. The
ST approach builds L models for the individual outputs Yj = {(yi)j}Ni=1. Let
(ỹi)j ∈ R be the predicted value for the jth ST model fSTj corresponding to

the input vector xi. The meta-dataset X̃ = {x̃i}Ni=1 is then built for SST [1]
so that x̃i = [(xi)1, . . . , (xi)M , (ỹi)1, . . . , (ỹi)L]. In the second learning stage,
ST is applied to learn a mapping f̃STj between X̃ and Yj for each j. In the
prediction phase of the SST, for a new input vector x̂, the first stage prediction
ŷ is computed with the models {fSTj}Lj=1 to create the extended input vector

x̂′ = [x̂, ŷ]. This is then given to the second stage models {f̃STj}Lj=1 to get the
actual prediction.

Similarly to SST, the ERC [1] method also forms an extended input dataset
from the predictions, but with an iterative fashion. Let us assume that variables
of target set Y have been randomly ordered. In the first learning stage of the
ERC, the ST method is used to form a mapping fST1 forX andY1 with the corre-
sponding predictions {(ỹi)

t=0
1 }Ni=1. Then meta-dataset for each of next iterations

t = 1, ..., L−1 is X̃t = {x̃t
i}Ni=1, where x̃

t
i = [(xi)1, . . . , (xi)M , (ỹi)

0
1, . . . , (ỹi)

t−1
t−2].

In each of the iterations t = 1, ..., L − 1, the mapping fSTt+1 between X̃t and
Yt+1 is built which gives the corresponding predictions {(ỹi)t+1}Ni=1. Because
the performance of the ERC is sensitive to the order of the chains [3, 1], this
training procedure is repeated q times with different chain orders. Training
phase produces q different chains, where each is constructed of L different sized
models. Prediction for new input vector is computed by following the same chain
order that was used in the training. Each chain gives chain’s prediction from the
output of the last model fSTL and the actual prediction is given by the average
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of these predictions.
According to [1], using predictions from the CV sets is recommended for

building the meta-datasets, because the CV-based values are more similar to
values in the prediction phase than the training targets. Note that the CV mod-
els are only used in the training phase to build the meta-dataset. An explanation
for improved generalization accuracy of the SST and ERC approaches compared
to the ST approach could be reasoned by the modeling capability of the depen-
dencies between the target variables. Another interpretation is that SST and
ERC methods out-weight variance to decrease bias [1].

2.2 Regression via Distance-Based Learning: MLM and EMLM

In the training phase of MLM [4], subsets of K reference points for the input
data R = {ri}Ki=1 ⊆ X and the output data T = {ti}Ki=1 ⊆ Y are selected.
Then, distance matrices Dx and Dy are computed such that Dx(i,k) = d(xi, rk)
and Dy(i,k) = d(yi, tk) where i = 1, ..., N , j = 1, ...,K, and d(·, ·) denotes the

Euclidean distance. Finally, the regression model with the distance matrices
is determined by the solution of the Ordinary Least-Squares (OLS) solution
B = (Dx

TDx)
−1Dx

TDy when K < N . For the Full MLM case, for K = N ,
the solution is simply Dx

−1Dy when the inverse exists [6].
In the prediction phase, distances to the input reference points of the new

input x̂ are computed and the output space distances δ ∈ R
K are computed from

the distance matrix regression model as δ = [d(x̂, r1), ..., d(x̂, rK)]B. The actual
prediction ŷ is then obtained by solving a squared stress optimization problem
[4, 5]. In the case of a single target regression, the solution of this problem is
given by the roots of the cubic equation [7]. Hence, this MLM variant is also
referred as Cubic MLM (C-MLM).

The EMLM method is a simplification of MLM as proposed and tested in
[8, 5]. It builds a distance-based regression model directly using the input-
distance matrix Dx as the kernel. Unique solvability (positive definiteness) of
the resulting OLS problem can be guaranteed by using Tikhonov regularization.

3 Experiments

In this section, we report the experimental results with five MTR datasets from
http://mulan.sourceforge.net/datasets-mtr.html. Similar to [1], the per-
formance of the methods was evaluated with the average Relative Root Mean
Squared Error (aRRMSE) and the relative improvement of the aRRMSE.

3.1 Experimental setup

Characteristics of the selected datasets are shown in Table 1 (see [1] for detailed
description of the datasets). All features were first minmax-scaled into [0, 1].
Rows with missing value were removed from the RF1 dataset.We randomly par-
titioned the datasets into training (80%) and testing sets (20%). We repeated
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Name N M L
JURA 359 15 3
WQ 1060 16 14
RF1 9125 64 8
SCM20D 8966 61 16
SCM1D 9803 280 16

Table 1: Datasets

Method Core PT Base Metadata
name method regressor based on
ST-MLM ST Full C-MLM -
SST-MLM SST Full C-MLM DOB-SCV
ERC-MLM ERC Full C-MLM DOB-SCV
ST-EMLM ST Full EMLM -
SST-EMLM SST Full EMLM DOB-SCV
ERC-EMLM ERC Full EMLM DOB-SCV

Table 2: Summary of the MLM and EMLM vari-
ants for MTR.

these divisions 30 times for JURA, WQ, and RF1, and 10 times for SCM20D
and SCM1D. Results for the aRRMSE error were averaged over the repetitions.

All the methods were implemented and tested in MATLAB R2018b environ-
ment. All the experiments were run on an eight-node computing cluster, where
each node was equipped with eight-core Intel Xeon CPU E7-8837 with 128 GB
memory. Description of the methods is summarized in Table 2. In the SST and
ERC variants, instead of the standard CV, we used the Distribution Optimally
Balanced Stratified Cross-Validation (DOB-SCV) [9] method with 10 folds to
construct the meta-dataset. For ERC-MLM and ERC-EMLM, we generated 10
different random chains for the datasets where L! ≥ 10 and L! different random
chains otherwise. The ERC-MLM method was only applied to the JURA and
WQ datasets due to its high computational cost.

RRMSE for a target variable j is given by

RRMSEj =

√√√√
∑Ntest

i=1 ((ỹi)j − (yi)j)2∑Ntest

i=1 (Ȳj)− (yi)j)2
, (1)

where Ntest is the size of the test set, ỹ is the predicted target, y is the ground
truth target, and Ȳj is the mean target value in the training dataset for the

variable j. Then, the aRRMSE is given by aRRMSE = 1
L

∑L
j=1 RRMSEj . Fi-

nally, the relative improvement of aRRMSE is defined as [1] RI = aRRMSEST

aRRMSEm
,

where aRRMSEST is the aRRMSE for an ST method and aRRMSEm is the
aRRMSE for a method m. RI values can be used to estimate how much the
overall accuracy is improved with respect to the ST method. RI-values larger
1 indicate that the accuracy is improved and the values smaller than 1 indicate
that the accuracy is degenerated.

3.2 Results

Results for aRRMSE are summarized in Table 3. The SST and ERC can improve
the overall accuracy of MLM and EMLM. Note that all the MLM and EMLM
variants using the same core PT method seem to have similar aRRMSE. The
SST variants give the smallest average aRRMSE for all other datasets except
for WQ, where the ERC variants are clearly better.
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Dataset ST-MLM SST-MLM ERC-MLM ST-EMLM SST-EMLM ERC-EMLM

JURA 0.37698 0.36820 0.37295 0.37603 0.36508 0.37238

QW 0.90623 0.90732 0.85139 0.90912 0.90859 0.85376

RF1 0.20381 0.10337 - 0.20205 0.10296 0.20072

SCM20D 0.09349 0.08649 - 0.09741 0.08843 0.08950

SCM1D 0.07243 0.07028 - 0.07345 0.07069 0.07159

Table 3: Average aRRMSE in the testing set.

Next we focus on analyzing the RI measure which is more informative than
the average aRRMSE. Results for RI are shown in Figure 1. For the RF1 dataset,
we computed RI separately without the second target variable, because aRRMSE
was highly dominated by the second target variable’s RRMSE. The second target
variable of RF1 is highly discrete compared to the other target variables. RI
results for the second target variable are shown separately in Figure 1.

Based on Figure 1, SST seems to improve the relative accuracy of MLM and
EMLM more than the ERC approach. Significantly, all the SST and ERC vari-
ants improve aRRMSE in each repetition for the two largest datasets SCM20D
and SCM1D. In spite of the fact that SST improves average aRRMSE more than
ERC for the JURA and RF1 datasets, the ERC variants have smaller degener-
ation of the accuracy in rare cases when it happens. Based on the results for
SCM20D and SCM1D in Figure 1, the accuracy of EMLM with SST is more
improved than the accuracy of MLM with SST. The SST-EMLM variant seems
very promising for further studies, because SST have much smaller computa-
tional cost than ERC [1] and EMLM have also much smaller cost than MLM
[5]. Therefore, the SST-EMLM is the fastest method from the SST and ERC
variants.

4 Conclusions

Previous works in multi-target classification have shown the promising potential
of the problem transformation methods. However, in multi-target regression the
subject of problem transformation is rarely studied. In this paper, we evaluated
the SST and ERC problem transformation methods with the lately proposed
distance-based regression methods, MLM and EMLM, in the multi-target re-
gression problems. The results demonstrate the potential of the problem trans-
formation with the distance-based regression. The SST and ERC variants of
the MLM and EMLM methods can improve the overall generalization accuracy
compared to the single-target MLM and EMLM methods. In the future work,
addressing issues of the problem transformation method selection and the target
variable selection based on the characteristics of the data could be studied. Be-
cause of the efficiency and simplicity of the nonparametric SST-EMLM method,
it is also an interesting subject for further studies.
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Fig. 1: Results for the relative improvement RI.
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