ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Variational Mixture of Normalizing Flows

Guilherme G. P. Freitas Pires and Mario A. T. Figueiredo

Instituto de Telecomunicagbes and Instituto Superior Técnico,
University of Lisbon, Portugal

Abstract. In the past few years, deep generative models, such as gen-
erative adversarial networks, variational autoencoders, and their variants,
have seen wide adoption for the task of modelling complex data distri-
butions. In spite of the outstanding sample quality achieved by those
methods, they model the target distributions implicitly, in the sense that
the probability density functions approximated by them are not explicitly
accessible. This fact renders those methods unfit for tasks that require,
for example, scoring new instances of data with the learned distributions.
Normalizing flows overcome this limitation by leveraging the change-of-
variables formula for probability density functions, and by using trans-
formations designed to have tractable and cheaply computable Jacobians.
Although flexible, this framework lacked (until the publication of recent
work) a way to introduce discrete structure (such as the one found in mix-
tures) in the models it allows to construct, in an unsupervised scenario.
The present work overcomes this by using normalizing flows as compo-
nents in a mixture model, and devising a training procedure for such a
model. This procedure is based on variational inference, and uses a varia-
tional posterior parameterized by a neural network. As will become clear,
this model naturally lends itself to (multimodal) density estimation, semi-
supervised learning, and clustering. The proposed model is evaluated on
two synthetic datasets, as well as on a real-world dataset.

1 Introduction

Generative models based on neural networks — variational autoencoders (VAEs),
generative adversarial networks (GANs), normalizing flows, and their variants —
have experienced increased interest and progress in their capabilities. Both VAEs
and GANs learn implicit distributions of the data, in the sense that, if training
is successful, it is possible to sample from the learned model, but the likelihood
function of the learned distribution is not accessible. Normalizing flows differ
from VAEs and GANs in that they allow learning explicit distributions of the
datal. Thus, normalizing flows lend themselves to the task of density estimation.

The goal of this work is to employ normalizing flows in a finite mixture
model, so as to better model multimodal datasets. In practice, a neural network
classifier is learned jointly with the mixture components. Doing so will naturally
produce an approach which lends itself not only to density estimation, but also
to clustering — since the classifier can be used to assign points to clusters —

Mn fact, there is a recent exception to this statement that combines the training framework
of GANs with the use of normalizing flows, so as to obtain a generator for which it is possible
to compute likelihoods [1].

205

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

and semi-supervised learning, where available labels can be used to refine the
classifier and selectively train the mixture components.

Dinh et al. [2], similarly to this work, reconcile normalizing flows with a mul-
timodal/discrete structure, by partitioning the latent space into disjoint subsets,
using a mixture model where each component has non-zero weight exclusively
within its respective subset. Then, using a set identification function and a
piecewise invertible function, a variation of the change-of-variable formula is
devised. Izmailov et al. [3] also exploit multimodal structure while using nor-
malizing flows for expressiveness. However, while the present work relies on a
variational posterior parameterized by a neural network and learns a mixture of
K flows, Izmailov et al. [3] resort to a latent mixture of Gaussians as the base
distribution for its flow model, and learn a single flow.

2 Normalizing Flows

Given a random variable z € RP, with probability density function fz, and
a bijective and differentiable function g : R” — RP, the probability density
function fx of the random variable & = g(z) is given by the so-called change-
of-variables formula

Fx(@) = f2lo™ (@) det (597 (@),

where det (% g_l(.’lz)) is the determinant of the Jacobian matrix of g~!, com-

puted at . If g is parameterized by some 0, this expression can be optimized,
so that it approximates some arbitrary distribution. For that to be feasible,
the base density, fz, has to be computationally “cheap” to evaluate, as well as

det (%g’l(x; 0)), and its gradient w.r.t 6.

Normalizing flow are class of models proposed by Rezende and Mohamed
[4], which has since become the basis of multiple state-of-the-art techniques for
density estimation [5, 6, 7, 8]. These models are obtained by applying the change-
of-variables formula to a function g which is the composition of L (parametric)
transformations ¢ = hy,_10hy_o0-- -0 hg, which fulfill the mentioned computa-
tional convenience requirements. Applying the change-of-variables formula, and

taking logarithm, yields

L—1
_ d
log fx (@) = log f (g™)) — Y log | det (o—he(ae))|
=0
where x;_1 = hzil(:c), Tr_9 = hZiQ(:BL,l), ey Ty = hal(azl).

The design of transformations that are sufficiently expressive, and whose Ja-
cobians are not computationally heavy, is the main challenge of the framework of
normalizing flows. Dinh et al. [6] and Papamakarios et al. [8] proposed instances
of such transformations, which are used in the experiments in this work.

206

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

3 Variational Mixture of Normalizing Flows

Consider a mixture of K normalizing flows. Let p(x|c) be the likelihood of data
point & under the flow indexed by ¢, where ¢ € {1,2,..., K}. Let ¢(c|x) be a
neural network with a K-class softmax output. Using g(c|x) as a variational
posterior over ¢, the corresponding evidence lower bound (ELBO) is given by:

ELBO = Ey[log p([c)] + Eq[log p(c)] — Eq[log g(c[z)]

K
=Y a(c|@)(log p(w|c) +log p(c) — log g(c|z)). (1)

c=1

All the terms in (1) are trivial: g(c|x) is the forward-pass of a neural network
with a K-class softmax output; logp(x|c) is the log-likelihood of @ under the
normalizing flow indexed by ¢; log p(c) is the log-prior of the component weights,
set by the modeller?. Notice that — Y _g(c|z)logg(c|x) is the entropy of the
variational posterior for sample . We denote this model by variational mizture
of normalizing flows (VMoNF). In a similar fashion to the variational auto-
encoder, proposed by Kingma et al. [9], a VMoNF is fitted by jointly optimizing
the parameters of the variational posterior ¢(c|x) and the parameters of the
generative process p(x|c), so as to maximize (1). This is done by leveraging
modern automatic differentiation frameworks, e.g. [10]. After training, the
variational posterior naturally induces a clustering on the data, and can be
directly used to assign new data points to the discovered clusters. Moreover, each
of the fitted components can be used to generate samples from the corresponding
cluster in which it “specialized”.

4 Experiments

In this section, the proposed model is applied to two benchmark synthetic
datasets and one real dataset. One of the synthetic datasets is used to bring
to attention a shortcoming of the model and how it can be overcome in a semi-
supervised setting. On the real dataset, the model’s clustering capabilities are
evaluted, as well as its capacity to model complex distributions. A technique
inspired in [11] and by the old idea of deterministic annealing [12] was employed
to improve training speed and quality of results. This consists in dividing the
inputs of the softmax layer in the variational posterior by a “temperature” value,
T, which follows an exponential decay schedule during training. This makes the
variational posterior “more certain” as training proceeds, while allowing all com-
ponents to be exposed to the whole data, during the initial epochs. Moreover, it
discourages components from being “subtrained” during the initial epochs and,
subsequently, from being prematurely discarded.

2When there is no a priori knowledge about the true component weights, the best assump-
tion is that they correspond to a uniform distribution: p(c) = 1/K.

207

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Figure 1: (a) Original dataset (b) Samples from the learned model. Each dot is colored according
to the component it was sampled from. The background colors denote the regions where each com-
ponent has maximum probability assigned by the variational posterior. (Note that the background
colors were chosen so as to not match the dot colors, otherwise the dots wouldn’t be visible)

4.1 Toy datasets
4.1.1 Pinwheel dataset

This dataset is constituted by five non-linear “wings”. See Figure 1 for the results
of running the model on this dataset. As expected, the variational posterior has
learned to partition the space so as to attribute each “wing” to a component of
the mixture.

4.1.2 Two-circles dataset

This dataset consists of two concentric circles. The experiment on this dataset
makes evident one shortcoming of the proposed model: the way in which the
variational posterior partitions the space is not necessarily guided by the intrisic
cluster structure of the data (see Figure 2-b). In the case of the two-circles
dataset, it was found that the most common partitioning arrived at consisted
simply of a split into two half-spaces. However, in a semi-supervised setting, this
behaviour can be corrected and the model successfully learns to separate the two
circles, as shown in Figure 2-d). In this setting, the model was pretrained on
the labeled instances and then trained with the normal procedure. There were
1024 labeled instances, and 64 unlabeled instances. In this case, the model has
the chance to selectively refine both the variational posterior and each of the
components. As is clearly visible in Figure 2, the model struggles with learning
full, closed, circles; this is because it is unable to “pierce a hole” in the base
distribution, due to the nature of the transformations that are applicable. Thus,
to model a circle, the model has to learn to stretch the blob formed by the base
distribution, and “bend it over itself”. This difficulty is also what keeps the
model from learning a structurally interesting solution in the fully unsupervised
case: it is easier for each component to learn to distort space so as to model
half of the two circles. Moreover, the points in diametrically opposed regions
of the same circle are more dissimilar (in the geometrical sense) than points in
the same region of the two circles. Therefore, when completely uninformed by
labels, the variational posterior’s layers will tend to have similar activations for

208

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

Figure 2: a) Original dataset. b) Samples from the learned model, without any labels. Coloring
logic is the same as in Figure 1. c¢) Labeled points used in semi-supervised scenario. d) Samples
from the model trained in the semi-supervised scenario.

0 1 2 3 4
e O FT TR
IIITOOGIES g 08 o b &
ololelololo]lse]s] > o oan 0ol 000 o

0.65 0.35 0.01 0.00 0.00
Figure 3: Samples from the fitted mixture Table 1: Normalized contingency table for the
components. Each row is sampled from the same clustering induced by the model. Rounded to
component two decimal places. Rows: true label. Columns:
cluster index.

N i)

points in the latter case, and thus tend to have similar outputs for them.

4.2 Real-world dataset

In this subsection, the proposed model is evaluated on the well-known MNIST
dataset [13]. For this experiment, only the images corresponding to the digits
from 0 to 4 were considered. In Figure 3, samples from the components ob-
tained after training can be seen. Moreover, a normalized contingency table
is presented, where the performance of the variational posterior as a clustering
function can be assessed. Note that the cluster indices induced by the model
have no semantic meaning. From Table 1 and Figure 3 it is possible to see that
although there is some confusion, the model successfully clusters the MNIST
digits.

5 Discussion

The main shortcoming of the proposed model is that the variational posterior
does not always partition the space in the intuitively correct manner. Potentially,
this could be improved by using a consistency loss regularization term. In fact,
this idea has been pursued in [3]. During the experimentation phase, it was found
that a balance between the complexity of the variational posterior and that of
the components of the mixture, is crucial for the convergence to interesting

209

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

solutions. This is intuitive: if the components are too complex, the variational
posterior tends to ignore most of them and assigns most points to a single or
few components. In principle, the model should be able to ignore redundant
components, if the complexities of the posterior and the flows are well calibrated.
This needs to be evaluated empirically. The effect of using different architectures
for the neural networks also requires further study and evaluation.

References

[1] A. Grover, M. Dhar, and S. Ermon. Flow-GAN: combining maximum like-
lihood and adversarial learning in generative models. In: AAAI Conference
on Artificial Intelligence. 2018.

[2] L. Dinh, J. Sohl-Dickstein, R. Pascanu, and H. Larochelle. A RAD ap-
proach to deep mizrture models. 2019. eprint: arXiv:1903.07714.

[3] P. Izmailov, P. Kirichenko, M. Finzi, and A. G. Wilson. Semi-supervised
learning with normalizing flows. In: ICML Workshop on Invertible Neural
Networks and Normalizing Flows. 2019.

[4] D. Rezende and S. Mohamed. Variational inference with normalizing flows.
In: International Conference on Machine Learning. 2015, 1530-1538.

[5] D.P. Kingma and P. Dhariwal. Glow: generative flow with invertible 1x1
convolutions. In: Advances in Neural Information Processing Systems 31.
2018, 10215-10224.

[6] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real
NVP. In: International Conference on Learning Representations. 2017.

[7] N. De Cao, I. Titov, and W. Aziz. Block neural autoregressive flow. In:
Conference on Uncertainty in Artificial Intelligence. 2019.

[8] G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow
for density estimation. In: Advances in Neural Information Processing Sys-
tems 30. 2017, 2338-2347.

[9] D.P. Kingma and M. Welling. Auto-encoding variational Bayes. In: ICLR.
2014.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer. Automatic Differentiatio in PyTorch.
In: NIPS Autodiff Workshop. 2017.

[11] D. Zhang, Y. Sun, B. Eriksson, and L. Balzano. Deep unsupervised clus-
tering using mizture of autoencoders. 2017. eprint: arXiv:1712.07788.

[12] K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to
clustering. Pattern Recognition Letters, 11:589-594, 1990.

[13] Y. LeCun and C. Cortes. MNIST handwritten digit database, 2010.

210

arXiv:1903.07714
arXiv:1712.07788

	1 Introduction
	2 Normalizing Flows
	3 Variational Mixture of Normalizing Flows
	4 Experiments
	4.1 Toy datasets
	4.1.1 Pinwheel dataset
	4.1.2 Two-circles dataset

	4.2 Real-world dataset

	5 Discussion

