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Abstract. Systems that accept voice commands have become estab-
lished in our daily lives. To process those commands, modern systems
usually use neural networks, which have been shown to be very success-
ful. Nevertheless, they are vulnerable against adversarial attacks—slightly
perturbed inputs, to fool the system, but are not recognizable by humans.
In this work we extend the adversarial−1 concept, introduced in the im-
age domain, to the speech recognition domain. By adapting the method-
ology we are able to identify adversarial inputs, in certain cases, with
an accuracy of 99.9%, while still detecting benign inputs with an accu-
racy of 99.8%, for the investigated attacks. Furthermore, we present a
technique to restore the correct label of an adversarial input, with up
to 67.6% accuracy. All program code for this work can be found on
https://github.com/OLStefan/Adversarials-1Speech-Recognition.

1 Introduction

Over the last few years, voice-controlled systems have become increasingly wide
spread. Many of those systems incorporate neural networks to process speech
data and understand the given commands. One example for such a system is
the DeepSpeech project by the Mozilla Foundation, which is based on research
by Hannun et al. [1]. Since that project is openly accessible1, it is also used in
this paper.

At the same time, it has been shown that neural networks are vulnerable
against adversarial inputs [2]—slightly perturbed inputs, where the manipula-
tion is unnoticeable for humans, but leads the artificial system to misinterpret
the input. More recently, adversarial attacks have also been shown to be ap-
plicable to speech recognition systems, which could lead to misuse. Carlini and
Wagner for example propsed a white-box attack [3], i.e., they assume knowledge
about the gradient of the model to attack. In contrast, Alzantot et al. [4] pro-
pose a black-box attack, i.e., they assume an adversary does not have knowledge
about the model, but only can query it to get information. Both attacks are
used in this paper.

In order to defend against those attacks, prior works proposed to use more
sophisticated preprocessing of the inputs, e.g., quantization, local smoothing,
or down-sampling. Rajaratnam et al. [5] also propose compression and filtering
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techniques, as well as using ensembles to identify adversarial inputs. In their
work, they reported a maximal F1-score of 0.91 when using compression/filter
techniques, resp. a maximal F1-score of 0.92 when using ensembles. Another
recent work of Zeng et al. [6] also use ensembles of different automatic speech
recognition systems, and, based on the similarities of the outputs, differentiate
between benign and adversarial inputs. They report a detection accuracy of
99.78%

In this work, we transfer a defending technique introduced by Worzyk &
Kramer [7] from the image classification domain to speech recognition. The basic
idea is to attack an unknown input with an internal, known attack, and measure
the difference between the input, and the internally manipulated counterpart.
This process will be explained in more detail in Section 3. Thereby, we are
able to detect 99.9% of adversarial inputs as adversarial, as well as 99.8% of the
original inputs as benign. In addition to a very high detection rate of adversarial
inputs, we adapted the process to restore the original class of adversarial inputs.
With the adaptation, we are able to correctly classify adversarial inputs with an
accuracy of 67.6%.

The remainder of this paper is structured as follows. In Section 2 we will
give a very brief introduction to the speech model “DeepSpeach” used in this
paper. Our defence is split into a detection phase (Section 3) and a restora-
tion/classification phase (Section 4). The corresponding results will be given
in the separate chapters. In Section 5 we will conclude our paper. All pro-
gram code for this work can be found on https://github.com/OLStefan/

Adversarials-1Speech-Recognition.

2 DeepSpeech

DeepSpeech is an open source2 speech recognition project, based on the work
of Hannun et al. [1], and works in three steps. 1.) During Preprocessing, the
Mel-frequency cepstrum coefficients (MFCC) of the audio signal are calculated.
Those coefficients resemble frequencies, which are important in human hearing.
2.) The MFCC are fed into the model, a bidiractional neural network to calculate
a “sequence of character probabilities for the transcription y, with ŷt = P (ct|X ),
where ct ∈ {a, b, c, . . . , z, space, apostrophe, blank}” [1]. As a loss function to
train the network connectionist temporal classification (CTC) [8] is used. 3.) In
a post-processing step, the predicted phase is compared with a language model.
Trained on the Speech Command Dataset [9], this model achieves an accuracy
of 83.86%.

3 Detection

The basic idea for this paper was introduced by Worzyk & Kramer [7] for the
domain of image classification. They proposed a two-step defence technique,

2https://github.com/mozilla/DeepSpeech
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where the first step is to detect adversarial inputs, and in a second step, they
try to reverse the attack and restore the correct class of a manipulated input.

The adapted workflow to detect adversarial inputs is depicted in Figure 1.
After receiving an unknown input, we use a known attack to create a manipulated
version of the input. Because the defender has knowledge about the system, he
is free to use black-box attacks, as well as white-box attacks. If the unknown
input was benign, the internal counterpart is an adversarial input, while, if
the input was already an adversarial input, the internal counterpart is called
adversarial−1. Based on the differences between the unknown input and the
internal counterpart, previously trained classifiers predict, whether the unknown
input was benign or adversarial.

Fig. 1: Workflow of the detection stage. The unknown input is attacked. The
L0, L1, L2 and L∞-differences between the input and manipulated version are
used to predict, whether the unknown input was original or adversarial.

In this paper, we use the attacks proposed by Alzantot et al. [4] and Carlini
& Wagner [3], to produce the adversarial inputs, as well as the internal coun-
terparts. Especially in the later described classification stage (cf. Section 4) the
randomness of Alzantot’s attack showed to be very usefull. After the attack, we
calculate the L0, L2, and L∞ norm of the input audio file �x and the manipulated
audio file �x′, as well as the L1, L2, and L∞ norm of the input MFCC values
and the manipulated MFCC values. Afterwards, the differences of the norms
are calculated. This results in six different parameters, i.e., three differences
between the raw audio files, and three differences between the MFCC values.
Based on these values the input is classified as benign or adversarial.

The classifiers we used were k-nearest Neighbours (kNN) with k = 10, a
Decision Tree (DT) classifier, and a simple MLP with three layers. The results
for the MLP are omitted, because the are way worse than the results of the other
two internal classifiers. All classifier implementations are based on the machine
learning library scikit-learn [10].

For our experiments, we used a subset of the SpeechCommand dataset [9],
and concentrated on the ten words: “down”, “go”, “left”, “no”, “off”, “on”,
“right”, “stop”, “up”, “yes”. For each of the words, 175 samples were randomly
chosen and manipulated to each of the other nine possible words, resulting in
15,750 adversarial inputs. Since we are using 2 different attacks, in total 31,500
adversarial samples, resp. samples of differences between original and adversarial
inputs were created.

Of those one time manipulated words, we chose 225 random samples of each
word, manipulated by each attack in the first step, and attacked them again with
the internal attack. Hence, we created 81,000 adversarial−1 inputs. In total, we
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thereby created a dataset of 112,500 samples, consisting of differences between
original and adversarial inputs, resp. between adversarial and adversarial−1

inputs. The whole dataset was spilt into a training set consisting of 90%, i.e.,
101,250 samples, and a test set consisting of the remaining 10%, i.e., 11,250
samples. Furthermore, to increase statistical evidence, we repeated our training
and testing 50 times, with each time a new randomly shuffled dataset.

The results for all attack combinations and classifiers are shown in Table 1.
Column attack 1 indicates the attack used by the adversary, while column attack
2 indicates the attack used as internal attack. The rows indicate the subset of
the whole dataset, on which the experiments were performed.

Table 1: Detection accuracy of adversarial (specificity) and benign (sensitivity)
inputs.

attack 1 attack 2 classifier sensitivity specificity accuracy

Alzantot
Alzantot

kNN 89.7% 99.7% 94.70%
DT 99.8% 99.9% 99.85%

Carlini
kNN 97.5% 98.3% 97.90%
DT 99.9% 97.7% 98.80%

Carlini
Alzantot

kNN 88.4% 100% 94.20%
DT 99.8% 99.9% 99.85%

Carlini
kNN 92.8% 99.4% 96.10%
DT 94.2% 100.0% 97.10%

Overall, it can be seen, that DT as internal classifier yield the best results, if
we use the attack of Alzantot et al. [4] as internal attack. Thereby, we achieve
the best mean sensitivity of 99.8%, as well as the best specificity of 99.9%.

4 Classification

In the classification stage, Worzyk & Kramer [7] proposed to use an untargeted
internal attack, to push an adversarial input over the nearest decision boundary,
towards the assumed to be most likely original class. However, in audio classifi-
cation, the attacks proposed so far are all targeted attacks. Thereby, we had to
adapt their idea to serve our purposes.

The technique, which worked in the end was to extend the classifiers used in
the detection stage, to also predict the original class. Thereby we found, that
when the target of the internal attack was the same, as the original correct class,
the prediction accuracy of the correct class was very high. In contrast, if the
target of the second attack was something different than the original correct class,
the prediction accuracy was more or less uniform among the possible classes.
In Figure 2 these distribution differences are shown. Considering all original
“left” inputs, which were manipulated to all the other classes, if the target of
the internal attack is left as well, the predicted original class is also “left” for
94.8% of the inputs. However, if the target of the internal attack is “down”, the
prediction is more or less random among all possible classes.
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Fig. 2: Exemplary depiction of the different prediction distributions. Inputs of
original class “left” are manipulated to all other classes. If the target of the
internal attack is “left” (left figure) as well, the classifier predicts class left for
many of the adversarial inputs. In contrast, if the target of the internal attack
is “down”, the predicted class is random among all possible classes.

Table 2: Correct label prediction of adversarial inputs.

kNN DT
accuracy 67.6% 33.6%

Based on this observation, we utilised the randomness of Alzantot’s attack,
to create 10 versions of each possible class for the unknown input and predicted
the corresponding original class. Thereby, we get a distribution of predictions
similar to Figure 2. Afterwards, we counted the number of predicted classes
and made a majority vote to determine the final prediction for an unknown,
but already identified adversarial input. The results for the decision tree (DT)
as well as k-nearest Neighbours as internal classifiers are shown in Table 2. In
contrast to the classification stage, kNN achieves the best results, with a correct
classification accuracy of 67.6% for adversarial inputs.

5 Conclusion

We presented a defence to adversarial attacks in the domain of speech recog-
nition. The defence itself is based on the work of Worzyk & Kramer [7], and
composed of two stages, where the first is to detect adversarial inputs, and the
second is to restore the original label.

In the first stage, we attack the given input with a given attack, to create a
manipulated version. Based on differences, i.e., the L0, L2, and L∞ differences
between the raw audio files and L1, L2, and L∞ differences between the Mel
Frequency Cepstral Coefficients (MFCC), we trained different classifiers to dis-
tinguish between benign and adversarial inputs. This results into a classification
accuracy of 99.85%, where the sensitivity, i.e., correct classification of benign in-
puts is 99.8%, and a specificity, i.e., correct classification of adversarial inputs is
99.9%. This result itself is better, than other recent methods, e.g. Rajaratnam
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et al. [5] report a maximal F1-score of 0.91, when using compression methods,
resp. 0.924 when using ensemble methods, or Zeng et al. [6] report an accuracy
rate of 99.78%, when using ensembles of automatic speech recognition systems,
and compare the output of the ensemble members.

In the second stage, we trained the classifiers not only to distinguish between
benign and adversarial inputs, but to classify for the original labels. We observed
a significantly higher classification accuracy, when the target class of the internal
attack is the same as the original class, in comparison to different target and
original classes. This behaviour was used to restore the original class successfully
in 67.6%, on an independent test set of adversarial inputs.

In future work we consider to investigate the distributions even further. This
might also be necessary in other speech recognition tasks with a larger corpus.
One option could be, to randomly choose words, until we find an explicit distri-
bution like in Figure 2.
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