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Abstract. Archetypes are those extreme values of a data set that can
jointly represent all other data points. They often have descriptive mean-
ings and can thus contribute to the understanding of the data. Such
archetypes are identified using archetypal analysis and all data points are
represented as convex combinations thereof. In this work, archetypal anal-
ysis is linked with quantum annealing. For both steps, i.e. the determina-
tion of archetypes and the assignment of data points, we derive a QUBO
formulation which is solved on D-Wave’s 2000Q Quantum Annealer. For
selected data sets, called toy and iris, our quantum annealing-based ap-
proach can achieve similar results to the original R-package “archetypes”.

1 Introduction

Consider a database storing characteristics of soccer players such as speed, ac-
curacy or height. An extreme data point could represent a player that is not
fast, but big and strong. Intuitively, these characteristics can represent a de-
fender. Other extreme data points may be interpreted as striker, goalkeeper
or midfielder. All remaining data points can either be assigned to one of these
categories or a combination thereof. Archetypal Analysis (AA) describes how
to find such extreme data points. These so-called archetypes should be chosen
such that all data points can be represented as a convex combination of them. A
representation is good if the approximation is similar to the original data point.
Existing implementations of AA use an iterative approximation algorithm [1, 2.
Thus, there is interest in studying further approaches to AA, as it may help
finding better solutions or solutions faster. With this paper, we combine AA
with Quantum Annealing (QA). QA is a metaheuristic for solving optimization
problems that incorporates quantum effects and that is available as specialized
hardware requiring the input to be in the form of a quadratic unconstrained bi-
nary optimization (QUBO) problem. The functional form of a QUBO problem
is: minimize #7Qz with z; € {0,1}" being a binary vector of size n representing
spins in a quantum system and () being an n X n real-valued matrix describ-
ing the variables’ relationship. Given matrix (), the annealing process tries to
find binary variable assignments to minimize the objective function. QA can
be used to solve various optimization problems. [3] presents Ising formulations
for Karp’s 21 NP-complete problems, as this is another input format of current
QA hardware. [4] uses a QUBO formulation for portfolio optimization based
on Markowitz’s modern portfolio theory. [5] describes prime factorization as an
optimization problem while [6] proposes a method to transform any factorization
problem into an Ising model.
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2 Archetypal Analysis (AA)

AA is a data analysis method focussing on a dataset’s extreme points [1]. Tt
identifies archetypes such that all data points can be represented as a convex
combination thereof. Archetypes are not necessarily data points, but are limited
to being convex combinations of them. This can be stated as following con-
strained minimization problem [2, 7]: RSS = HX — aZTHF with Z = X778 s.t.
Z?:laij =1 and Z?:lﬁij =1 with aij,ﬁij Z 0, 1= 17...7TL andj: 1,...,k.

The n x m-matrix X holds n observations with m attributes each, m x k-
matrix Z represents the k archetypes and n X k-matrix « assigns the data points
to the archetypes. ||H 7 18 a suitabe matrix norm, in our case the Frobenius
norm [2]. The RSS to be minimized can be regarded as solution quality. The
first constraint states that data points are represented as convex combinations
of archetypes, i.e. X = aZT with X being the representation of data points.
The second constraint states that archetypes are convex combinations of data
points, i.e. Z = XT3 with 3 being an n x k-matrix of coefficients.

Since «;; and j3;; are real numbers between zero and one, there are unlimited
value assignments in general resulting in the impracticality to try all combi-
nations to find the best one. For this, [1] have developed an approximation
algorithm for AA. Based on that, [2] have implemented AA in programming
language R and introduced a corresponding package. After initial selection of
archetypes Z, they alternately repeat the following steps: (1) calculate best as-
signment matrix « for given archetypes Z and (2) calculate best archetypes Z
for given matrix «. This process is repeated until a maximum number of itera-
tions is reached or the decrease in RSS is below a threshold [2]. This algorithm
is nondeterministic as the result depends on the initial archetypes and there is
no guarantee to find optimal archetypes or assignments [2].

AA is used to analyze athletes [7], scientists [8], head shapes [1] or alternative
routes [9]. Extensions to AA focus on robustness against outliers [10] or handling
missing values [11] or nominal data [12].

3 Concept

AA provides optimal archetypes and assignments. Thus, there are two opti-
mization problems that can either be solved using a single QUBO form or two
separate ones. Preliminarily, we represented AA as a single QUBO only by
neatly transforming the minimization function with all constraints. However,
numerous auxiliary variables were introduced making this approach unfeasible.
Instead, a vivid consideration of what makes good archetypes led to a simpler
and smaller QUBO where archetypes and assignments are calculated separately.

3.1 Part 1: Archetypes

When choosing k > 1 archetypes for given data set X, [1] showed that optimal
archetypes lie on the data set’s convex hull. We also observe that archetypes are
not too close to each other, but distributed over the convex hull. Assuming the
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high distances between archetypes as a good choice in general, finding archetypes
can be rephrased as: choose k data points as archetypes so that their distances
are maximal. Note that assuming that high distances make up good choices of
archetypes highly simplifies the problem. While AA approximates the convex
hull through k points, we look for k& data points with maximal distance to each
other. However, these two problems seem related, as the respective solutions are
very similar in many cases (see Sec. 4).

As stated, we restrict ourselves so that only data points can be archetypes
and not, as originally defined, also convex combinations thereof. This limitation
leads to a lower number of decision variables and thus to a simpler and faster
calculation. With this restriction, we propose to use the following minimization
function:

n

minimize y:—ZZB -B;-d(P;, P}) + C; - (ZB —k> (1)

i=1 j=1

Here, vector B is defined holding n binary decision variables with n being the
number of data points. B; = 1 means that data point ¢ is an archetype and
B; = 0 if not. d(P;, P;) is the Euclidean distance between data points P; and
P;. However, the first term of Eq. 1 is minimal if all data points are selected as
archetype. Thus, an additional constraint is needed that enforces that exactly k
archetypes are selected. Since QUBO formulations do not allow constraints, this
condition must be transformed into a penalty added to objective function y. It
is zero iff the constraint is met, otherwise a positive value worsens the solution
quality such that the solution is no longer the best. The resulting penalty is
depicted as the second term of Eq. 1. Constant C; weights the penalty term
and must be chosen appropriately for each data set. It must be high enough so
that the solution quality for all assignments that do not meet the condition will
severely be degraded.

Finally, Eq. 1 can be rewritten into an n x n-matrix @ where d (P;,P;) is
replaced by the actual distances between the respective data points and param-
eters C7 and k are accordingly assigned with specific values. Then, the final
minimization problem is in QUBO form of y = BTQB.

3.2 Part 2: Assignments

This part represents each data point as a convex combination of the k archetypes,
e.g. “Ppis 0.75 times Z; plus 0.25 times Zs plus 0 times Z3”. The goal is to
find an assignment matrix « for data set X with given archetypes Z where o;
specifies to what degree data point ¢ is assigned to archetype j. The following
must apply [2]: entry «;; is a real number 0 < a;; < 1 and Z?:l aj; = 1 for all
1 <1< n.

The assignment of individual data points is independent and can therefore be
optimizied separately using a QUBO formulation. Since QUBO is suitable only
for combinatorial optimization problems and finding the mapping is continuous,
real-valued a;; must first be discretized. For a dynamic fit we introduce precision
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g, an input parameter that specifies how many decision variables are used per
data point per archetype. This results in g -k decision variables needed for each
data point. Thus, we introduce the following minimization function:

m k 2 g-k 2
minimize y; = Z <Xij — Za” . ng) +Cs - <Z B, — g) (2)
j=1 1=1 s=1

A data point’s representation as a convex combination of archetypes is good if
it is as similar as possible to the data point, i.e. the sum of squared deviations
(RSS) is minimal. This results in the first term of Eq. 2 for each data point 4.
Vector B of binary decision variables B; is defined as B = (By, ..., By.;) where
each block of g variables has the same meaning, i.e. we count the number of
variables per block having value 1, divide it by g and interpret this value as the
proportion of the associated archetype j for data point . The condition that the
sum of « values for a data point equals one must also apply. The combination
of the two conditions and a conversion to a penalty term modeled as [13] yields
the second term of Eq. 2. (3 weights the penalty term and must be chosen
appropriately. This defines the framework conditions for the assignments, but
the actual optimization is still pending. Again, the two parts (enforcing convex
combination and minimizing deviation) of Eq. 2 are rewritten into a g-k x g-k
matrix Q where corresponding entries of Z7 and X are used for a specific data
set and parameter g and weight C; must be chosen appropriately.

In summary, our approach requires to solve multiple QUBO formulations.
Finding archetypes results in an n x n matrix ¢ with n being the number of
data points (Eq. 1). For the assignments we solve n QUBO formulations each
having size g- k x g-k (Eq. 2). Thus, a total of n+ 1 QUBO formulations must
be solved for a data set with n data points.

4 Evaluation

We evaluate our approach against R-package “archetypes”. Based on the 2D
dataset toy [2] it is shown how both methods behave for different values of 2 <
k < 6. Since both methods are non-deterministic, the calculation is performed
ten times for each k. The average solution quality @ RSS and standard deviation
o are calculated from these results. In addition, RSS,.;» as the smallest value
obtained is given. The results are presented in Fig. 1la and Fig. 1b. The
average solution quality shows for all values of k that the method of R-package
“archetypes” performs better. However, for most values of k, the differences
are insignificantly small, especially for £ = 5. Also regarding the best found
solutions, the differences in quality are not particularly large. For most values
of k, RSS,;n is smaller with R. However, our QA approach provides a slightly
better result for £k = 4. Interestingly, the standard deviation of R for k£ < 3 is
exactly 0. In these cases the same result was always found. For larger values of
k the standard deviation increases. This is different regarding our QA heuristic:
Here, the standard deviation is relatively large only for £k = 2 and otherwise
quite small. Overall, the standard deviations are in similar orders of magnitude.
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RSSyin @RSS o RSSyin @RSS o

k k

2 54.074  54.074 0.000 2 67.732  76.837 5.960
3 11.307  11.307 0.000 3 17.237  17.238 0.001
4 4
5 5
6 6

6.844 7.394 1.119 6.828 8.376  1.542
2.525 4.627  2.243 4.568 4.642  0.045
1.692 4.138  1.977 5.316 5.387  0.051
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Fig. 1: Results for the dataset toy.

For determining how many archetypes describe data set toy best, a scree plot
is shown for both methods. For this, the number of archetypes k was plotted
against the respective average value of RSS (see Fig. le). It shows that for both
methods the average value of RSS decreases strongly for & < 3. These “elbows”
at k = 3 indicate that data set toy can best be described by three archetypes.
For comparing the best solutions for k& = 3, they are visually shown in Fig. 1c
and Fig. 1d. It can be seen that the chosen archetypes from R are slightly
better. However, the assignments seem to be similarly good for both methods.

Besides data set toy, we also used dataset iris [14] to evaluate our QA ap-
proach. The data set consists of 150 measurements of iris blossoms, all of which
belong to one of three different species. An interesting feature of the dataset is
that species 1 is well distinguishable from the others, while species 2 and 3 are
more similar [15]. This challenges methods trying to predict species affiliation
based on the measurement data. From the descriptive meaning one expects that
dataset iris can best be described by three archetypes, whereby each archetype
should represent one species.

The analysis showed that for both methods the average value of RSS is
similarly good (R 6.366 and QA 6.437), however, R performs slightly better.
Nevertheless, the best RSS value was obtained with our QA method (QA 6.192
and R 6.366). Thus, regarding only solution quality, both methods perform
equally good. Regarding the results w.r.t number of archetypes, R performed
as expected, since all three archetypes belonged to different species. This was
not the case with our QA method. Two archetypes belonged to species 1, one
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archetype to species 2 and species 3 was not considered. This contradicts the
vivid meaning. However, it is astonishing that nevertheless the solution quality
is not worse than the results from R.

5 Conclusion

This paper proposes to approximate archetypal analysis using quantum anneal-
ing. For this, QUBO formulations were provided and compared to the R-Package
“archetypes” for data sets with different dimensions. Overall, the results of our
QA method are comparable to those from R. Even though the average solution
quality of R was usually better, there were some cases for which a slightly better
result could be achieved using our QA method.

Regarding ongoing and future research we want to extend our QA method in
order to find the number of archetypes which describe the data best in advance.
That implies to include the so-called “elbow criterion” into our QUBO formu-
lation. Another application of our QA approach would be to find the farthest
points in a point cloud, which is also a quite complex problem and a vital topic
in computational science.
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