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Abstract. In this short note we explore a few quantum circuits with
the particular goal of basic image recognition. The models we study are
inspired by recent progress in Quantum Convolution Neural Networks
(QCNN) [12]. We present a few experimental results, where we attempt to
learn basic image patterns motivated by scaling down the MNIST dataset.

1 Introduction

The recent demonstration of Quantum Supremacy [1] heralds the advent of the
Noisy Intermediate-Scale Quantum (NISQ) [2] technology, where signs of supe-
riority of quantum over classical machines in particular tasks may be expected.
However, one should keep in mind the limitations of NISQ-devices when study-
ing and developing quantum-algorithmic solutions - among other things, these
include limits on the number of gates and qubits.

At the same time the interaction of quantum computing and machine learn-
ing is growing, with a vast amount of literature and new results. To name a
few applications, the well-known HHL algorithm [3], quantum phase estimation
[5] and inner products speed-up techniques lead to further advances in Support
Vector Machines [4] and Principal Component Analysis [6, 7]. Intensive progress
and ongoing research has also been made towards quantum analogues of Neural
Networks (QNN) [8, 9, 10]. Boltzmann machines use sampling in a connected
graph to the examples created by an unknown probability distribution. Here
the energy function of an Ising spin system is used. Adiabatic Quantum Com-
puters naturally obey the statistics of such an energy function an hence they are
an intuitive option to build on the success of Boltzmann architectures. Their
quantum mechanical nature allows AQC to recognize statistical patterns that
are classically impossible to catch. On the other hand, hybrids of quantum and
classical methods (Variational Circuits) can be used for supervised learning. The
feedforward procedure is defined by the configuration of parameters acting on
a quantum circuit. These parameters are optimized e.g. by gradient descent
where a classical loss function is defined [11].

In this note we study a class of quantum circuits that are inspired by Convo-
lutional Neural Networks (CNNs). Attempts to replicate the CNN design have
already been put forward [12]. We note that a well-known issue when trying
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to replicate a neural network with a quantum computer are the non-linearities
occuring at every layer. In [12] such issues are addressed by using partial mea-
surement as a tool for reduction of dimensionality and as a way to introduce
non-linearities in the system. We explore a related quantum circuit architecture
where we view the CNN poolings and non-linearities as appropriate combinations
of (unitary) rotations and measurements 1. Below we study the ability of these
models to recognize simple patterns in small-scale image data. The possible
advantage of such an approach stems from the number of required parameters,
which are for an input of size N of order O(log(N)).

2 Circuit Exploration and Experiments

CNNs have proven to be effective tools as they are tailored to obtain struc-
tural information stemming from local recurrence of values. A CNN usually
consists of a sequence of layers that ”coarse-grain” the input, while in between
fully-connected layers are used for reduction of dimension while preserving the
structural information. The quantum-mechanical translation to this procedure
we use is inspired by [12].

Fig. 1: An overview of the quantum circuit model used in the experiment. After
encoding the pattern, controlled rotations are learned. The subsequent measure-
ments reduce the dimension of the problem. The procedure is then repeated.

2.1 The Basic Circuit Model

In our model, four qubits are initiated in the state |0〉. Then, using the technique
proposed in [13], a subsequent unitary operation maps the states to the super-
position, which represents our data (see multigate U in figure 1). This operation
requires quadratic gates with respect to the input size. Yet, the resulting states
are highly precise and for small input sizes, the gate requirements do not exceed
the limitations of NISQ devices. After state preparation, we conduct controlled

1Some of our experiments are available at: https://github.com/bogeorgiev/quantum-
algorithms-explorations
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Fig. 2: Bottom: The patterns to be classified. Top: The percentage of miss-
classification with respect to the epoch. The dots indicate the resulting error
percentage after 200 circuit repetitions. The black lines are the mean of the
surrounding points. For all of the patterns quick convergence is observed, where
the peak performance of the middle patterns is substantially less precise than
for the other patterns.

Ry(φi) rotations given by

Ry(φ) =

(
cosφ −sinφ
sinφ cosφ

)
.

Before we conduct the first layer of measurements leading to a reduction of
dimension, some structural information should be obtained. We then repeat
the procedure on the remaining circuit. Here the nontrivial question arises,
what the ideal relation between the entanglement of an input vector and the
required control for operations is, as for nonzero entanglement, the pattern might
contain information in the non-local correlations between qubits. While product
states might be classified best using local operations, highly entangled ones might
require multiple controls for gate operations. For a random input vector both
are possible, hence in our approach we chose rotations controlled only by one
qubit, giving the circuit flexibility for various inputs.

Elaborate toolboxes provide well tuned methods to determine gradients in
classical machine learning. In the classical environment, this procedure is partic-
ularly easy, because the nonlinear activation functions are designed to have gra-
dients, that are easy to determine. Time evolution according to the Schrodinger
equation is governed by unitary operations and hence linear. The description
via Schrodinger equation breaks down at the intersection between the quan-
tum and classical world, which can be introduced using measurements. We
exploit this to create nonlinearity by projective measurement which is a map-
ping |ψ〉 7→ Pm |ψ〉 /p(m), where Pm is a projection to a one-qubit basis state
with probability p(m). While providing nonlinearity, this operation still has no
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Fig. 3: Means of the down-sampled MNIST set for digits 6, 3 and 8

clear notion of a gradient. As a proxy for a gradient we here use finite differences
[11], according to

∂L

∂θj
≈ L(θ + ∆θj)− L(θ −∆θj)

2∆
(1)

where θj is one of our training parameters and L is the cross entropy given by

L(p, q) = −
∑
i

pi log qi . (2)

The cross entropy is evaluated between the softmax function of the circuit’s
final measurement as obtained after the testing repetitions and the softmax of
the actual classification of the example. We evaluate the circuit’s quality via the
percentage of misclassification.

Figure 2 shows the results of the first 3 experiments for simple pattern recog-
nition tasks. The circuit clearly shows learning for all three tasks with peak
performance at 3%, 9% and 1.5%, respectively. This result is in accordance with
the intuition on quantum computers being able to deal with large data for small
resources, but at the same time delivering a good instead of a perfect solution.
Reducing the error to zero would require reaching perfect orthogonality between
states before the final measurement. Due to the measurements not being a
majority vote as in most classical supervised learning tasks, having nonzero mis-
classification chance will most probably remain an aspect of minimalist quantum
circuits.

2.2 MNIST classification

It has been demonstrated that a quantum circuit can be successfully trained on
the down-sampled MNIST data set [8]. Yet, while the optimal error rate of 2%
obtained in the cited paper is impressive, large resources are employed to reach
such a result. The following table summarizes the resources required compared
to the architecture investigated in this note.
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QCNN ansatz QNN ansatz [8]

qubits 4 17
trained parameters 5 170

Furthermore, in the outlined MNIST classification experiments [8], a smaller
data set was introduced where one works with two digits only and deals with
representative samples that are sufficiently distinguishable (w.r.t. some metric).
Motivated by this, we cropped the MNIST dataset in the following way. We
clustered the (down-sampled to 4× 4 pixels) MNIST digits by a k-means proce-
dure and found the corresponding cluster centers - a further normalized picture,
for example, of these means is given in Figure 3. In fact, these cluster means
were the motivation behind considering the patterns in Figure 2.

Afterwards we selected digit samples that are sufficiently close (in l2 sense)
to these cluster means and thus formed our dataset. Working with the cluster
means and digit samples that are very close to the cluster means, the model
experiences a similar behaviour to the toy-examples in 2. We expect that with
additional fine-tuning and slight extension the model will be able to perform
acceptably well even for classification of digit samples that are further away
from the cluster means. We study these issues in an upcoming work.

3 Discussion and Further Work

In this short note, we have presented a few explorations that exhibit promising
results with a 5 -10% error rate, despite circuit architecture being chosen with
more concern for the restrictions of NISQ than for the problem setup. We plan
to further build upon these initial observations - both in terms of complexity and
rigorous investigation. In an upcoming work we intend to analyze further the
notion of convolution that was understood in terms of appropriate intermediate
measurements. Further theoretical questions arise when one also asks about
robustness of gradient descent and ”barren-plateau”-related issues [15]. With
this in mind, we view the present note as just the beginning step towards further
(both theoretical and practical) work in the subject.
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