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Abstract. We review the current state of the art in the domain of
machine learning applied to computer networks. First of all, we describe
recent developments in computer networking and outline the potential
fields for machine learning that arise from these developments. We discuss
challenges for machine learning in this particular field, namely the inherent
big data aspect of computer networks, and the fact that learning very of-
ten needs to be conducted in a streaming setting with non-stationary data
distributions. We discuss practical issues like privacy protection and com-
puting resources before finally outlining potential technological benefits of
this emerging scientific field.

1 Introduction

The application of machine learning techniques in the area of computer networks
is a very promising area of study. Steadily growing network traffic, especially
in the Internet or in huge data centers, as well as the continuously increasing
number of endpoints due to mobile devices and Internet of Things (IoT) appli-
cations, implies an enormous management and monitoring effort when designing
and operating these networks. Network automation mechanisms based on, e.g.,
Software-Defined Networking (SDN), can leverage advanced telemetry solutions
to allow fine-grained traffic management. Large scale data transfer and ever-
growing bandwidths raise the demand for open-loop network management as-
sistance or sustained closed-loop auto-remediation, self-healing or -optimization
techniques.

On the machine learning side, challenges arise due to the inherent ”big data”
aspect of network traffic. Because of this, learning often has to be conducted
”on the fly” on streaming data, without storing any data at all. Learning is
further complicated by the non-stationarity of the data which can produce the
catastrophic forgetting effect to which Deep Neural Networks (DNN) are partic-
ularly vulnerable[1]. Last but not least, the acquisition of sufficient amounts of
good-quality training data is often difficult due to privacy protection issues, and
the results of machine learning are often not generalizable because all networks
and their users have strongly individual characteristics.

Methods or applications of machine learning for computer network manage-
ment and monitoring:

• machine learning for network automation and programmability in the data,
control, management or knowledge plane cognitive/autonomic network
management and monitoring

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

241



• machine learning in network fault, configuration, accounting, performance
or security management

• big data and deep learning approaches for network traffic engineering and
routing

• in-network computing using machine learning

• streaming (network) data processing by deep neural networks

• continual learning on network traffic data

• acquisition of training data from computer networks and generalization of
results

2 Survey of Recent Works

Over the last years, several surveys and conference tracks regarding the applica-
tion of machine learning for computer networks have been established. For ex-
ample, [2] gives an overview of different applications for machine learning in com-
puter networks and also shows up current advancements and opportunities. The
applications identified in the article include information cognition, traffic predic-
tion, traffic classification, resource management, network adaption, performance
prediction and configuration extrapolation. Another survey presented in [3] cat-
egorizes possible applications in traffic prediction, traffic classification, traffic
routing, congestion control, resource management, fault management, QoS and
QoE management and network security. Both surveys mention traffic classifi-
cation and traffic prediction among the first applications for machine learning
in networking. These subfields of network management also leveraged machine
learning to enhance traffic engineering and control in earlier publications [4, 5].
Another example for using machine learning to classify network traffic flows
and their throughput in simulated data center networks is presented in [6]. In
contrast to simulated traffic used in these publications however, flow charac-
teristics in real-world networks are often fluctuating and complex [7]. Abrupt
and gradual changes in computer networks and traffic characteristics can pose
a significant challenge for the application of machine learning models. Machine
learning based flow size prediction used for improved routing can be found in [8].

As proposed for knowledge-defined networking [9] or cognitive network man-
agement [10], machine learning techniques in networking can especially be com-
bined with network monitoring and network softwarization and virtualization
established in SDN [11, 12] and Network Functions Virtualization [13]. The com-
bination of machine learning based classification with SDN, forming an adaptive
traffic engineering framework is presented in [14]. An approach that proposes
the use of deep reinforcement learning on synthetic network traffic for routing
can be found in [15]. [16] introduces the combination of learning from existing
Dijkstra-based routing algorithms and imitating them with higher performance
using a dynamic routing framework for SDN to optimize network throughput
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based on simulated data. A solution with supervised deep learning for routing
decisions based on real traffic demands is presented in [17]. The model is us-
ing aggregated known traffic demands as an input to optimize the overall path
utilization. [18] analyzes real-world network flows captured from a university
campus network. Thereby, the prevalence of small flows and the classification
of features is discussed and the importance of data collection in real networks
is emphasized. The relevance of deep learning based traffic classification and
prediction in SDN is explained in [19]. Traffic analysis and routing optimization
with deep learning are explicitly named as major future research problems. This
is also supported by the necessary shift from rule-based network traffic control
to mechanisms using artificial intelligence (AI), e.g., due to steadily increasing
traffic volumes [20]. [21] argues that a network AI can be used to predict future
network traffic from past data to evolve network management and automation.
Using a network AI, [22], [23] and [24] focus on intelligent traffic routing for
aggregated traffic characteristics and improved network analytics.

For verification, prediction models can be cross-checked, e.g., with existing
evaluations of the interpretability of deep learning models used in the area of
computer networks [25]. An interesting option is a generative replay approach,
whereby generated characteristic traffic is combined with prior data to ensure
the adaptability of the prediction model [26].

3 Challenges in the Area of Computer Networks

High bisection and link bandwidths, offer large amounts of data to be used for
machine learning. First, the mere data volume continuously transferred over
currently prevalent link speeds around 10 Gbit/s accounts for ≈4,5 terabyte
per hour. While this volume is created on a single link, even small local area
networks of mid-sized organizations can contain thousands of individual links.
Furthermore, presently available Ethernet link speeds allow rates of up to 400
Gbit/s. For example, in 2015 Google presented the Jupiter datacenter network
generation, that is used in a single Google datacenter, to have a bisection band-
width of 1.3 Pbit/s (≈1,000,000 Gbit/s) [27]. The bisection bandwidth is defined
by the sum of the bandwidths used by the links that need to be cut to section the
network to two roughly equally sized partitions. As mentioned in [27], the bisec-
tion bandwidth of Google’s datacenter networks is constantly increasing (from
2 Tbit/s in 2004, 10 Tbit/s in 2006, 82 Tbit/s in 2008, 207 Tbit/s in 2009 to
the aforementioned 1.3 Pbit/s in 2012) and can be assumed to be much higher
in the recent past.

Consequently, collecting and processing data being transferred over large
computer networks holds significant challenges. When collecting the traffic
transferred over multiple links in the same network, a large amount of data
is redundant, as multiple subsequent links (along a path in the network) trans-
fer the same packet sequence. However, to analyze the traffic characteristics in
a network, each link or at least path has to be considered, e.g., to allow for
efficient network utilization and traffic flow prediction. Furthermore, collecting
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the data on multiple links is necessary if the overall state of the network (e.g.,
link or component outage, latency, packet loss etc.) is used in the machine
learning model. This also includes changes in the topology and configuration
of the network. Therefore, a common approach is not to simply use the entire
payload (as, e.g., offered by pcap, RSPAN etc.), but rather only (aggregated)
metadata of the transferred packets. A typical solution is to extract only parts
of the payload and network state (e.g., INT) or focus on the packet headers, e.g.,
containing addresses, type and length information etc. (e.g., NetFlow, sFlow,
IPFIX). Aggregation can be based, e.g., on a network flow, for example a single
metadata record per download (esp., a 5-tuple containing source IP address,
destination IP address, source transport port, destination transport port, trans-
port protocol) or further aggregated forms of management data (e.g., SNMP,
NETCONF, RESTCONF, YANG). Nonetheless, also these aggregated forms of
network traffic data collection can lead to multiple gigabytes to terabytes of data
per day, as, e.g., observed in university campus core networks [18, 28, 29].

For predictive analysis or network management, the data needs to be col-
lected over longer time frames, as traffic in a network is typically fluctuating and
sudden spikes are common, e.g., due to popular downloads or external events.
Collecting training data to be used for machine learning only on short intervals
(e.g., seconds or minutes) might not contain these spikes, consequently negatively
impacting the accuracy of the machine learning model, e.g., used for prediction.
Besides these abrupt events in the state, also gradual changes in the state of the
computer network need to be considered for predictive network management and
monitoring. For example, the overall consumed bandwidths and hence utiliza-
tion of links is constantly rising. This effect can be observed, e.g., by looking
at the 5-year traffic statistics of DE-CIX as one of the largest internet exchange
points worldwide [30] (currently transferring a peak traffic of ≈8,000 Gbit/s).
Besides the constant increase in traffic, also the aforementioned fluctuation can
be derived from the peaks while looking at these statistics. Another fluctuation
can be observed in monthly or weekly statistics of these internet exchange points.
As expected, traffic peaks are higher in the evening compared to other times of
day and comparatively low in the early morning. These gradual, periodic, sea-
sonal and abrupt changes need to be considered as concept drift for predictive
analytics and machine learning.

The challenges posed by velocity and volume (as well as redundancy) of
data can be addressed using existing solutions, e.g., leveraging related big data
techniques. Abrupt fluctuation and gradual changes in the network state and
topology can be addressed by applying machine learning models and predictive
analytics to different time and learning intervals. Also, considering context in-
formation from the network (e.g., paths, topology etc.), e.g., originating from
existing network management and monitoring or automation mechanisms can
help to consider these effects in the prediction models. All the challenges need
to be taken into account to allow a generalization of computer network models
used for machine learning, leading to better accuracy and hence applicability of
resultant mechanisms like predictive analysis and management.
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4 Challenges in the Area of Machine Learning

The challenges for machine learning when applied to computer networks are
manifold:
Physical data acquisition In computer networks, common hardware compo-
nents that have direct access to network traffic (like, e.g., routers or switches)
have limited computational capacity, which makes it necessary to export the
data to more powerful devices. This can lead to problems with export proto-
cols (like NetFlow) that are vendor-specific and contain hidden parameters that
cannot be changed.
Privacy protection Analyzing network traffic, even if just connection meta-
information (protocol, sender, receiver) is involved, requires access to potentially
sensitive information that is, to various degrees, protected by national laws. Ac-
quiring and even publishing such data therefore requires a complete, documented
processing chain that ensures that sensitive information like IP addresses are
anonymized while preserving essential content, and that the data acquisition
process does not lead to additional security risks.
Big data and streaming data Data throughput in large computer networks is
significant. Apart from issues related to the collection of data, training machine
learning models in real time poses an even bigger challenge: first of all, it is
out of the question to store all of the data for later training. Rather, individual
samples have to be processed as they arrive, using small mini-batches at most
with few training iterations. This imposes strong constraints on the complexity
of machine learning models, but also on the types of models that can be used
(tale, e.g., SVMs which are ruled out by these constraints).
Non-stationarity and catastrophic forgetting A very important issue re-
lated to the ”streaming data” aspect is the problem of non-stationary data. If
data are collected over a certain time period, one can always randomly shuffle
collected data and ensure an approximately uniform data distribution. How-
ever, computer network traffic can exhibit highly non-stationary characteristics
(to see this, consider WiFi utilization in an university campus on weekdays or
week-ends) on time scales that are not always obvious: if training is conducted
in a streaming fashion, the machine learning model will, over time, be exposed to
strongly varying data distributions. Such a temporal variability is known to lead
to an effect termed catastrophic forgetting [1] in most current machine learn-
ing models (DNNs, SVMs linear classifiers) and must be actively avoided. This
can be done in various fashions, either by maintaining statistically significant
holdout datasets (termed ”replay buffers” in reinforcement learning literature,
see, e.g., [31]) or by using models that are (more) robust against catastrophic
forgetting (see, e.g., [1, 32]).
Time-variable class imbalances A potential consequence of non-stationary
data distributions is, at least for classification settings, a variable proportion
of individual classes over time. This is a challenge for training strategies that
rely on static per-class re-weighting of loss gradients, or on oversampling based
on fixed assumptions about class frequencies. Such strategies would have to be
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adapted over time, introducing additional hyper-parameters like time constants,
thus leading to additional complexities.
Validity and evaluation of trained models A central assumption in ma-
chine learning (see, e.g., [33]) is that samples for training and testing/applying
the model are drawn from the same underlying probability distribution. For
data whose distribution is non-stationary over time (see previous paragraphs),
this obviously no longer holds, which means that a model trained on data from
time interval T = [t1, t2] will not necessarily be valid outside T , in particular for
t � t2. This poses problems especially for evaluating model performance and the
interpretation of such performance measures (see [34] for a related discussion).

5 Resulting Opportunities for Machine Learning

It is often the case that new application domains motivate new theoretical devel-
opments. Especially considering the challenges stated in Sec. 4, the investigation
of the following aspects would facilitate the deployment of machine learning in
computer networks: in the first place, we see the the development of efficient
models that are more robust to changing data statistics than DNNs are (see,
e.g., [1, 35, 32, 36] for some potential approaches), or else the modification of
DNN models in that sense. In computer networking, it is often not important
(or even possible) to train perfectly accurate models, whereas execution speed
is often a more significant criterion. Furthermore, what would be very help-
ful are theoretical developments concerning the guarantees that can be given
for non-stationary data distribution, in analogy to the guarantees provided by
conventional statistical learning theory [33].

6 Technological Perspectives

Machine learning applied to the field of computer networks allows significant
enhancements especially in the area of distributed network management and
monitoring. These can be classified in open-loop and closed-loop management
systems. Open-loop systems can be used to analyze the state of the network
and address the challenges mentioned in Section 3. Due to the aforementioned
volume, velocity and fluctuation in current network deployments, planing and
maintaining network capacity and traffic engineering poses a significant chal-
lenge for network administrators. Using open-loop systems, decisions of these
administrators can be assisted using, e.g., suggested or semi-automated tasks
derived or predicted from machine learning models of the networks. However,
velocity and abrupt changes in the network and transported traffic character-
istics also lead to requirement for closed-loop systems. Related work has been
carried out as adaptive management, self-healing or auto-remediating network
management in the past decades. Certainly, the generalizability and applicabil-
ity of these approaches is cumbersome. Yet, recent advancements in the area
of network programmability and automation allow (e.g., originating from SDN
and Network Functions Virtualization - NFV) for an application of predictive
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analytics and maintenance for specific tasks in network management and moni-
toring. These can be applied to the common management categories formed by
the classic FCAPS (fault, configuration, accounting, performance and security
management) paradigm of computer network management [37].

For example, fault management can be supported by proactive or predictive
analytics and maintenance as well as correlation techniques leveraging machine
learning. Configuration management can benefit from the automation of config-
uration and deployment tasks using machine learning. Accounting management
can use predictions, e.g., to evaluate customer profiles. In the area of perfor-
mance management, machine learning models can be used for capacity planning
and predictive traffic engineering. Security management can use machine learn-
ing to detect network attack patterns and anomalies as well as applying resilient
remediation and mitigation.

7 Conclusion and Future Work

The related work dealing with the application of machine learning in computer
networks discussed in this contribution together with the identified challenges
and opportunities support the relevance of this emerging scientific field. This is
further strengthened by presented recent surveys and scientific conference titles
and tracks in this area. Overall, machine learning leverages analysis and process-
ing of network management information residing in the control and management
plane. Often, machine learning is therefore described as applied in an interme-
diate plane between control and management, also referred to as an open- or
closed-loop knowledge plane [9]. However, by driving network automation and
programmability down to the data plane, i.e., by using concepts like program-
ming protocol-independent packet processors (P4) [38], machine learning does
not have to reside only between control and management plane. P4 offers pro-
grammability inside the data plane, also referred to as in-network computing.
This allows for faster and more fine-grained extraction of network metadata (e.g.,
in-network or streaming telemetry compared to classic push- or pull-based mon-
itoring), as data being sent from data plane to upper layers, as well as faster and
more fine-grained handling and manipulation of data, i.e., packets, within the
data plane. This way, the intended state of the network (e.g., fine-grained load
balance and fault tolerance) as also alluded to in the upcoming network man-
agement paradigm intent-based networking [39], can be ensured in a timely and
automated manor on the control as well as the data plane, leading to efficient
operation and utilization of the network. Timely in this case especially means,
that reactions and proactive measures can be applied in time frames of min-
utes and seconds or even fractions of seconds, while changes on the management
plane, operated by humans, typically happen in much greater intervals. Also,
parts of the machine learning application can be placed within the data layer,
e.g., in the sense of data preprocessing or collaborative and distributed data
analysis. This way, computational intensive machine learning approaches can
be placed or centralized in planes on a higher level (e.g., control, management)
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and data with high velocity can be pre-processed decentralized directly in lower
levels, i.e. the data plane. Nonetheless, also human network management on the
management plane can benefit from decision support, e.g., based on predictive
analytics as mentioned for open-loop network management systems leveraging
machine learning.
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