
Tournament Selection Improves Cartesian
Genetic Programming for Atari Games

Tim Cofala, Lars Elend, and Oliver Kramer

Computational Intelligence Group
Department of Computing Science

University of Oldenburg
26122 Oldenburg, Germany

Abstract. The objective of this paper is to extend Cartesian Genetic
Programming (CGP) for the evolution of Atari game agents in the Ar-
cade Learning Environment. Based upon preliminary work on the use of
CGP playing Atari games, we propose extensions like the repeated evalu-
ation of elite solutions. Furthermore, we improve the CGP optimization
process by increasing the diversity in the population with tournament se-
lection. Experimental studies on four exemplary Atari games show that
the modifications decrease premature stagnation during the evolutionary
optimization process and result in more robust agent strategies.

1 Introduction

Learning behavioral strategies in complex environments is an important chal-
lenge in various domains including game playing, robot control and even au-
tonomous driving. The Arcade Learning Environment (ALE) featuring Atari
games is an interesting testbed for reinforcement learning in the domain of game
AIs. Recently, Wilson et al. [10] successfully applied Cartesian Genetic Program-
ming (CGP) to the evolution of Atari game programs achieving state-of-the-art
performance for some games. CGP uses genetic operations to create and modify
a population of computer programs in search of an optimal solution. In com-
parison to deep learning approaches [9, 8], whose game strategies are implicitly
encoded in weights, CGP has the advantage of producing human-readable pro-
gram code. However, a fast and robust evolutionary optimization process is
difficult to achieve. In this paper, we build upon Wilson’s work [10] and extend
CGP by, (1) introducing a reevaluation strategy for the evolution of more robust
agents without increasing the total number of evaluations and (2) enhancing the
diversity in the population with a tournament selection variant.

This paper is structured as follows. Section 2 gives a short introduction to
ALE and Atari games. Related work on CGP and Atari games is introduced
in Section 3. The extensions of CGP and the tournament selection variant are
introduced in Section 4 and experimentally analyzed in Section 5. Conclusions
are drawn in Section 6.

2 Arcade Learning Environment

ALE is a free open source software framework introduced by Bellemare et al.
[1]. It has been designed for the development and evaluation of general, domain

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

345

independent agents. ALE provides an interface to more than 50 Atari games
based on Atari 2600, which is a video game console developed in 1977. Each
game can be comprised as a reinforcement learning problem, provided by the
framework through a game-handling layer. For every time step, typically each
frame, agents receive a 2D array consisting of 160x210 pixel inputs. Agents
can respond with one of 18 possible, discrete actions. A reward is provided,
depending on the difference in the game score between subsequent frames. ALE
also handles game management procedures like the termination and reset of
games and saving and restoring of game states.

3 Cartesian Genetic Programming

CGP was introduced by Miller in 1999 [7] as an extension of genetic programming
(GP) [5]. Similar to GP it aims at evolving computer programs to solve problems
in various domains. CGP solutions are represented by directed acyclic graphs. A
CGP graph consists of several nodes, which can be divided into three categories
depending on their task in the graph: input nodes, function nodes, and output
nodes. Input nodes represent constants or variables as program inputs. They
will be passed into the direction of the output nodes in a feed-forward manner.
Output nodes represent the program output, e.g., actions in case of reinforcement
learning tasks. The function nodes between the input and output nodes allow
modification and shaping of the flow of information. In many representations,
function nodes are organized in columns and rows and can be explicitly indexed
by Cartesian coordinates. Each function node chooses its respective function
from a global, domain specific set of primitive functions. The definition of the
function set is a key aspect for the design of a successful CGP approach and
highly problem dependent. The number of inputs of function nodes depends on
the arity of the employed function set.

Harding et al. [3] introduced mixed type Cartesian genetic programming
(MT-CGP) to enable CGP to work on variable data types. In MT-CGP the
functions, used by the computational nodes, are overloaded, so they can work
on multiple types of data like real numbers and vectors.

Wilson et al. [10] were the first introducing CGP to Atari games. They
build upon previous work applying CGP to image processing and filtering tasks.
They use pixel matrices as inputs for the CGP agents and a function set featuring
mathematical, statistical, and matrix functions. CGP for reinforcement learning
tasks has rarely been studied, in contrast to deep learning and neuro-evolution
approaches, e.g. [9, 8].

4 Extending CGP for Atari Games

Our experiments are based on a reimplementation of the work by Wilson et al.
[10]. Figure 1 outlines the CGP ALE game approach. CGP creates a program,
which has access to the ALE images as input and to the games’ actions as output.
The achieved scores are basis of the program’s fitness.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

346

22 4. Cartesian Genetic Programming

1

a

b

+ - +

⇥ - ÷

output
i2

f0

f1

i0

i0

i1

i2

f0 f2 f4

f1 f3 f5

0 0 1 2 1 2 1 3 2 1 3 4 0 0 6 4 3 0 7

Figure 4: Example CGP program, pictured in the typical directed acyclic graph
representation. Program inputs are the nodes i0, ..., in. The function
nodes f0, ..., fn are aligned in rows and columns. Beneath the graph the
corresponding genotype is presented.

of the primitive functions from the function set look-up table. Depending on the
maximum arity a of functions of the function set, a connection genes determine
the source of the inputs for the respective node. In the pictured example, the
function set consist of arithmetic functions, with a = 2. Thus, every function
node features two input genes and therefore two connections to previous nodes.
Those genes usually index a collection of nodes to which a connection is allowed.
Function nodes, whose output is not further used, are called inactive nodes and
are pictured with a dashed border. The number of function nodes in the program
graph is dependent on the user-defined parameters Ln. Additionally the genome
will feature no genes, no displaying the number of program outputs. Those genes
will determine which nodes output will function as a program output. Thus a
genotpye will usually consist of Ln(1+a)+no genes. The genotype for the graph
in figure 4 is shown beneath the graph. The function genes are encoded by three
integer values. The first integer corresponds to the index of the used function in
the function set. Since every function has an arity of 2, two additional integers
are needed to specify the input source. Outputs are each described by one gene.
[Mil11]

The process of translating a genotype into a directed acyclic program graph is
called genotype-phenotype mapping and is one of the defining characteristics of
CGP. Let the number of program inputs be ni. The process will start by creating
ni input nodes. Since the function inputs for a specific problem are consistent for
all programs, input nodes do not need to be encoded in the genotype. Function
nodes will be translated based on the genotype. For every tuple of function and
connection genes, a function node is created and connected to the previous nodes.

71

Figure 12: Agent for the game Ms. Pacman literally stuck in a local optimum

basis – as also noted by Wilson et al. [WCBLM]. Therefore, it is common for an
agent to receive drastically varying results in different attempts of one game. All
in all this can lead to steps in the fitness curve and possible to floor effects – as
the results for Space Invaders indicate. This makes the comparison of different
CGP configurations more complicated.

Conclusion of the Experimental Results

The findings from the conducted experiments are more than just a replication of
the results presented by Wilson et al.. In consecutive experiments, the perfor-
mance of the evolved agents could be improved in all of the 4 games tested. The
experiments lead to some general conclusions applicable to the evolution of Atari
game AIs with CGP and possibly also to CGP in the context of reinforcement
learning.

The first experiment demonstrates that evaluating each individual only once
during the evolutionary process can lead to an overestimation of the agent’s per-
formance. Due to often non-deterministic and not fully observable environments,
this might also apply to other reinforcement learning tasks. A reevaluation of
agents can lead to a more accurate estimation of their fitness, and furthermore
to an increase of their performance. The experiments demonstrate that for some
games, this procedure resulted in better performing agents, compared to those
evolved by the normal configuration, although CGP terminated with a much
lower final score in runs featuring reevaluation. A striking example and possible
explanation is the overfitting that could be observed during test runs for the game

CGP program ALE gameevolutionary process

actions

images

/score

fitness

candidate

Tournament selectionMutation

Elite survival Candidate evaluation

Fig. 1: Overview of CGP playing ALE game framework.

4.1 Reevaluation

Wilson et al. used a the common (1+λ) evolutionary strategy for their approach,
i.e, in each generation λ child individuals are created by mutating the one par-
ent individual. The best individual among parent and children is selected as
parent for the next genreation. However, with the stochasticity of the ALE an
individual can have varying fitness values when evaluated multiple times. Thus,
evaluating an agent only once could lead to an overestimation of its performance.
Therefore, we introduce a revaluation strategy for CGP. When evaluation takes
place every individual in the population is evaluated regardless of whether it
has been evaluated before. In case of a (1 + λ) this only applies to the par-
ent individual. Its fitness is made up by the average of the fitness values of
all its evaluations. Reevaluation should therefore lead to a better estimation of
the parent’s real performance, while keeping the overhead of additional evalua-
tions minimal. In general, this strategy could increase the robustness of evolved
agents, i.e., develop a game AI that performs similarly in repeated games.

4.2 Tournament Selection

As next step, we aim at increasing diversity in the population and preserve
individuals that have performed excellently multiple times. To achieve this, the
classic (1 + λ)-CGP strategy is abandoned in favor of the following strategy,
which is more in oriented to the fashion of classic genetic algorithms [6] and has
successfully been applied to CGP variants using crossover [2]:

1. We introduce tournament selection allowing every individual to be selected
as a parent which could lead to an increase of population diversity.

2. We increase the population size λ of child individuals produced in each
generation and the number κ of surviving elites.

Algorithm 1 shows the pseudocode of the proposed selection strategy. Tour-
nament selection with tournament size ξ selects one parent, which is mutated
afterwards. This process is repeated until λ children are created. Additionally,
κ elites are added that survive from the previous generation. Last, the new
population is evaluated including a reevaluation of the surviving elites.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

347

Algorithm 1 Population generation with tournament selection

1: repeat
2: parent p ← tournament selection (size ξ, population P)
3: child c ← mutation of p
4: until λ children created
5: new population P ′ ← children c ∪ κ elites
6: evaluate population P ′

5 Experiments

In the following, we experimentally analyze Wilson’s CGP strategy (reimpl.)
equipped with (1) repeated evaluations of a candidate solutions (reeval.), (2)
increased population sizes, and (3) tournament selection (tourn.) on the games
Asteroids, Boxing, Ms. Pacman, and Space Invaders.

5.1 Settings

In this paragraph we describe the experimental setup. CGP is parameterized
oriented to the work of Wilson et al., in particular using the same function set.
Individuals consist of 40 function nodes aligned in one row. Point mutation is
used for the creation of new individuals with a mutation rate 0.1. Likewise, a
(1 + 9) strategy is used in the reeval. condition. For the tourn. runs, the number
of elite individuals is set to κ = 3, while the number of children is increased
to λ = 12, resulting in a population size of 15 individuals. Tournaments are
held between κ = 4 randomly selected individuals. For comparability, each
run is limited to 10,000 evaluations taking the reevaluations into consideration.
The ALE is configured to include stochasticity by setting the repeat action
probability to 0.25.

After termination of CGP the last generation’s best performing agent is eval-
uated in 20 separate trials of the respective game. This test phase provides a
better understanding of the agent’s real performance. In contrast, the score of
the evolution phase is based on the best individual’s fitness of the last generation
for every run.

5.2 Results

Per experiment and game 10 runs are executed and the results are presented
with mean and standard deviation in Table 1 and Figure 2. In comparison to the
original reimpl. strategy, reeval. and tourn. runs terminate with a lower score in
all tested games (evolution phase). However, the results of the test phase indicate
a drastic difference to the results of the evolution phase. Although reeval. and
tourn. terminated with lower fitness values, these scores are a better estimation
of the agents’ real performance, i.e. the results in the test phase. Furthermore,
comparing the test phase results, reeval. evolved better performing agents in the
games Asteroids, Ms. Pacman and Space Invaders. Agents created with

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

348

the tourn. strategy reached superior results in the games Asteroids (M = 3312)
and Ms. Pacman (M = 1156.5) compared to the other configurations. Merely
for the game Boxing, reimpl. evolved the best performing agents.

Table 1: Experimental comparison of the three CGP approaches.

approach game evolution phase test phase diff

reimpl. Asteroids 6555.0 ±1120.9 2172.3±520.2 4382.7
Boxing 49.0 ±24.1 11.1 ±17.3 37.9

Ms. Pacman 2469.0 ±676.9 611.0±475.1 1858.0
Space Invaders 987.0 ±169.6 595.1±291.6 391.9

reeval. Asteroids 2799.1 ±1120.6 2560.3±956.4 238.9
Boxing 14.0 ±17.6 7.8 ±17.1 6.2

Ms. Pacman 946.5 ±539.5 855.7±572.6 90.8
Space Invaders 644.7 ±143.9 642.3±158.9 2.4

tourn. Asteroids 4455.9 ±909.7 3312.0±651.8 1143.9
Boxing 13.2 ±12.5 8.4 ±13.8 4.9

Ms. Pacman 1254.7 ±490.1 1156.5±556.8 98.2
Space Invaders 649.9 ±53.2 650.0 ±56.3 −0.7

The significance of the experimental results is tested with the Mann-Whitney-
Wilcoxon test. The analysis reveal that the tourn. strategy produces signifi-
cantly better solutions for the game Asteroids with W = 7, p < .001 and
for Ms. Pacman with W = 20, p = .023, but not for Space Invaders with
W = 46, p = .78 and Boxing with W = 48, p = .91. For the latter, the aver-
age performance in the test runs was slightly lower for both strategies featuring
reeval. albeit this difference is not significant.

Figure 2 shows that even if the CGP programs are created with the same pro-
cedure and configuration, their performance in different games can vary consid-
erably. Some games show outliers like the high performing reimpl. strategy agent
for Boxing. To compensate such outliers, which may disturb the evolutionary
process, a further increase of repetitions at a high cost may be advantageous.

●

reimpl reeval tourn

20
00

30
00

40
00

Asteroids
●

●

reimpl reeval tourn

−
10

0
10

20
30

40

Boxing

reimpl reeval tourn

50
0

10
00

15
00

20
00

Ms. Pacman

●

●

reimpl reeval tourn20
0

40
0

60
0

80
0

10
00

Space Invaders

Fig. 2: Results of the agents in the test phase for the four games: Asteroids,
Boxing, Ms. Pacman, and Space Invaders

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

349

6 Conclusions

The significance of experiments at Atari games with only one repetition can
be limited due to outliers. Reevaluating individuals during the course of evo-
lution leads to a better estimation of their capabilities and in general to more
robust agents. Tournament selection offers increased population diversity due to
its adjustable selection pressure. Our combination of the reevaluation strategy
and tournament selection is a significant step towards the prevention of prema-
ture stagnation. Allowing an increased number of elite individuals can protect
well evaluated ones from being replaced by outliers. All in all, our results in-
dicate that for complex problem domains like Atari games, CGP requires more
complex evolutionary operators and algorithmic modifications than the simple
(1 + λ)-CGP offers. Future work may concentrate on the analysis of advanced
genetic operators like subgraph crossover [4]. Further, we plan to employ niching
strategies to increase diversity in the population.

Acknowledgements

We thank the German Research Foundation (DFG) for supporting our work
within the Research Training Group SCARE (GRK 1765/2).

References

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Envi-
ronment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[2] J. Clegg, J. A. Walker, and J. F. Miller. A new crossover technique for Cartesian genetic
programming. Proceedings of the 9th annual conference on Genetic and evolutionary
computation - GECCO ’07, page 1580, 2007.

[3] S. Harding, V. Graziano, J. Leitner, and J. Schmidhuber. Mt-cgp: Mixed type cartesian
genetic programming. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pages 751–758. ACM, 2012.

[4] R. Kalkreuth, G. Rudolph, and A. Droschinsky. A new subgraph crossover for cartesian
genetic programming. In European Conference on Genetic Programming, pages 294–310.
Springer, 2017.

[5] J. R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87–112, jun 1994.

[6] B. L. Miller, D. E. Goldberg, et al. Genetic algorithms, tournament selection, and the
effects of noise. Complex systems, 9(3):193–212, 1995.

[7] J. F. Miller. An empirical study of the efficiency of learning boolean functions using a
cartesian genetic programming approach. In Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation-Volume 2, pages 1135–1142. Morgan Kaufmann
Publishers Inc., 1999.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pages 1928–1937, 2016.

[9] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[10] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller. Evolving simple programs for
playing Atari games.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

350

