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Abstract. Current feature selection methods, especially applied to high
dimensional data, tend to suffer from instability since marginal modifica-
tions in the data may result in largely distinct selected feature sets. Such
instability strongly limits a sound interpretation of the selected variables
by domain experts. We address this issue by optimizing jointly the pre-
dictive accuracy and selection stability and by deriving Pareto-optimal
trajectories. Our approach extends the Recursive Feature Elimination al-
gorithm by enforcing the selection of some features based on a stable,
univariate criterion. Experiments conducted on several high dimensional
microarray datasets illustrate that large stability gains are obtained with
no significant drop of accuracy.

1 Introduction

Feature selection, i.e. the selection of a small subset of informative and relevant
features to be included in a predictive model, has become compulsory for a wide
variety of applications due to the appearance of very high dimensional datasets,
notably in the biomedical domain [1]. Filtering noisy and irrelevant features
can avoid overfitting the data and potentially improve predictive performance.
Feature selection also allows for the learning of fast and compact models, which
are easier to interpret. Such models can then be analyzed by domain experts and
are easier to validate. Getting more interpretable models is also a key concern
nowadays and even considered by many as a requirement when deployed in the
medical domain.

Feature selection has been already studied in depth [2]. Yet, current meth-
ods are still widely unsatisfactory mainly because of the typical instability they
exhibit. Instability here refers to the fact that the selected features may dras-
tically change even after marginal modifications of the data. Domain experts
would often prefer a more stable feature selection algorithm over an unstable
and slightly more accurate one, as selection instability reduces their trust to-
wards the selected features [3, 4]. We address this problem here by deriving
Pareto-optimal compromises in the (accuracy, stability) objective space using
an extension of the well-known Recursive Feature Elimination (RFE) algorithm.
Domain experts can then choose a particular trade-off based on their preferences.

2 Related Work

Looking for a stable feature selection first requires a proper way to quantify
stability itself. Many measures have already been proposed: the Kuncheva in-
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dex [5], the Jaccard index [6], the POG [7] and nPOG [8] indices among others.
Under such a profusion of different measures, it becomes difficult to justify the
choice of a particular index and even more to compare results of works based
on different metrics. In the hope of fixing this issue, a recent work [9] lists and
analyzes 15 different stability measures. They are compared based on the sat-
isfaction of 5 different properties that a stability measure should comply with.
They also propose a novel and unifying index. This index, used throughout this
paper, measures the stability across M selected subsets of features. It can be
computed according to equation (1):

φ = 1−
1
d

∑d
f=1 s

2
f

k̄
d ∗ (1− k̄

d )
(1)

with k̄ the mean number of features selected from the original d features and
s2
f = M

M−1 p̂f (1 − p̂f ) the estimator of the variance of the selection of the fth
feature over theM selected subsets, where p̂f is the fraction of times feature f has
been selected among them. These subsets are typically obtained by resampling
M times the learning data. This measure is equivalent to the Kuncheva Index
(KI)[5] when the number of selected features k is constant across the M selected
subsets, but it can be computed in O(Md) whereas KI requires O(M2d).

Several authors have proposed different approaches to increase stability. For
instance, instance-weighting for variance reduction [10] and ensemble methods
for feature selection have been proposed [3] and generally increase feature stabil-
ity. Stability selection [11] is a particular ensemble method which selects features
with a selection frequency pf higher that a threshold πthr for at least one regu-
larisation parameter λ ∈ Λ. While these methods have been shown to increase
selection stability, the gain they offer is still limited as they were not designed to
search explicitly through a bi-dimensional (accuracy, stability) objective space.

3 Hybrid Univariate-RFE

We propose to use the methodology illustrated by algorithm 1 to tune the trade-
off under study. First, we find a set of stable features, SN , as the top-N features
based on an univariate criterion (lines 3,4). Univariate filters tend to be more
stable than multivariate methods as they do not take feature interdependencies
into account. These N features are then forced to be selected at each iteration
of the RFE, which selects, in a multivariate fashion, the most appropriate com-
plementary features. It does so by iteratively minimizing the logistic loss1 (line
7), ranking every feature based on the absolute value of their weight w in the
learned decision function (line 8) and dropping the one feature with minimal
weight2 (line 9), until the desired number of features k is reached. Finally, it

1The original RFE algorithm optimizes the hinge loss but we opt here for the logistic loss
allowing for a smoother control of the selected features.

2For computational reasons, it is common to drop a fraction of the remaining features
instead of a single one at each iteration. We opt here for 20%.
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learns the final decision function by minimizing the logistic loss on the k selected
features (line 10), possibly with another regularization constant (λf ). The dif-
ference between this approach and the classic RFE is that the features in SN

are never dropped and are thus always present in the final model. To take ad-
vantage of this knowledge, one can apply differential shrinkage on these features
to increase their importance in the multivariate selection (line 7, with � the
element-wise product). The intensity of this differential shrinkage is dictated by
the meta-parameter ε ≤ 1 defined on line 5.

If the set of stable features, SN , is robust, then increasing N , the number of
features selected beforehand, is expected to increase the overall selection stability
at the possible cost of some predictive accuracy. If N = 0, this hybrid RFE is
equivalent to the classical RFE, where no feature are pre-selected. When N = k,
our approach becomes equivalent to a purely univariate filter.

Algorithm 1 Hybrid RFE.

1: procedure SelectFeatures(N,λ, ε, λf )
2: F ← the set of all features
3: rf ← univariate criterion rank of each feature (descending order)
4: SN ← {f : rf ≤ N}
5: βf ← ε if f ∈ SN , 1 otherwise
6: while |F| > k do
7: w∗ ← argminw

∑n
i=1 log(1 + exp−yi(wxi)) + λ||β �w||2

8: r∗ ← rank features {f ∈ F \ SN} on |w∗
f | in descending order

9: F ← SN ∪ {f : r∗f ≤ (|F| −N − 1)}
10: w∗ ← argminw

∑n
i=1 log(1 + exp−yi(wxi)) + λf ||w||2

11: return (F ,w∗)

4 Experiments

In our experiments, we focus on two univariate criteria: the supervised Golub’s
ratio [12] and the unsupervised sample variance. The Golub’s ratio measures the
signal to noise ratio and has been often applied when analyzing gene expression
data. We observed experimentally that, unlike the variance which is very stable,
the Golub’s ratio is generally only slightly more stable than the multivariate
RFE selection, making any compromise between the two difficult. To generate
a family of univariate filters with different (relevance, stability) trade-offs, we
pose the following criterion

GVf =
|µ+(f)− µ−(f)|
σ+(f) + σ−(f)

+ λvvar(f) (2)

with λv a parameter balancing between the weight given to the Golub’s ratio
and the sample variance. A low λv generates a relevant but not very stable
univariate filter while a high λv defines a less relevant but more stable criterion.
Experiments are performed on six micro-array datasets, summarized in Table 1.
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Table 1: Information on the micro-array datasets.

author year n d disease d after filtering
alon 1999 62 2000 colon cancer 2000

borovecki 2005 31 22283 Huntington’s 1000
singh 2002 102 12600 prostate cancer 1250

gravier 2010 168 2905 breast cancer 2905
chiaretti 2004 111 12625 leukemia 5000

chin 2006 118 22215 breast cancer 100

All these datasets have a small n (number of samples) to d (number of fea-
tures) ratio, which generally causes feature selection methods to be particularly
unstable. The learning task consists in predicting whether or not a patient is
suffering from the corresponding disease. As is often done when dealing with
high dimensional datasets, we first pre-filter the feature space by removing the
features with lowest variance (except for alon and gravier, for which such a
pre-filtering had already been performed). The amount of pre-filtering is found
such as to maximize the predictive performance of the classical RFE (N = 0)
and is kept constant for all values of N,λ, ε and λf . To measure the accuracy
and stability obtained with a given set of meta-parameters, we use the classic
bootstrap protocol which draws with replacement M samples of the same size
as the original dataset. Each model is evaluated on the out-of-bag examples
and the mean accuracy is reported. The selection stability is evaluated using
equation (1) over the M resamplings.

Results with k = 20 and M = 1000 can be seen on Figure 1. The plot
represents the areas dominated by the Pareto-optimal curves that can be drawn
by model selection on λ and λf of the classic RFE (purple), the hybrid variance
RFE (λv →∞) (red) and the hybrid RFE with two other values of λv (cyan and
green). The hybrid-RFE is able to increase the selection stability by consider-
able amounts, sometimes even without decreasing the predictive accuracy at all.
Model selection is strictly dominated by our approach for all datasets. Apart
from some small performance increases for low stabilities, better compromises
are reached when λv →∞, making our approach mostly sensitive to the stability
of the stable set, and less to its predictive accuracy. Results on chin are similar
to the ones reported here. On borovecki, the best Pareto curve is obtained by
increasing λv gradually and fixing N=k. In other words, it appears that there is
no benefit to using multivariate selection on this dataset.

Figure 2 shows that the hybrid-RFE is able to select features that are com-
plementary to the ones whose selection is forced. The blue area is obtained
by selecting the remaining features independently of the pre-selected ones. The
green (red) area is obtained with the hybrid-RFE without (with) differential
shrinkage. The independent selection is dominated by our approach and differ-
ential shrinkage can improve the compromise further by 1) helping the RFE to
select adequate complementary features, hence increasing the predictive accu-
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racy and 2) stabilizing the selection of the complementary features. This can
be clearly seen on the Figure 2a where points inside circles of the same color
corresponds to the same value of N (here 12 and 15).

RFE

GV1 GV2
VAR

(a) chiaretti

RFE

GV1 GV2
VAR

(b) gravier

(c) alon (d) singh

Fig. 1: Evaluation of the classic RFE (purple), the variance-hybrid RFE (VAR)
(red) and some golub-variance-hybrid RFE (GV1,GV2) (cyan and green). For
the sake of readability, the axis of the different plots are not at the same scale.

(a) alon (b) chiaretti

Fig. 2: Comparison of the independent selection (blue), the hybrid RFE with no
differential shrinkage (green) and with differential shrinkage (red). Points inside
circles of the same color are obtained with the same value of N .
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5 Conclusion

The typical instability of standard feature selection methods is a key concern
nowadays as it reduces the interpretability of the predictive models as well as
the trust of domain experts towards the selected feature subsets. Such experts
would often prefer a more stable feature selection algorithm over an unstable
and slightly more accurate one. In this paper, we tackle this issue by consider-
ing selection stability as an actual goal in a bi-objective framework. We derive
Pareto-optimal trajectories from which domain experts can choose a particular
compromise based on their personal preferences. The trajectories are obtained
by pre-selecting some features based on a stable univariate criteria, before run-
ning the multivariate Recursive Feature Elmination (RFE) algorithm which then
selects the most appropriate complementary features.

Results on multiple micro-array datasets show that large stability increases
are obtained at small cost of classification accuracy. The performance of our
approach mostly depends on the stability of the considered univariate criterion,
which makes the sample variance criterion particularly appealing.
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