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Abstract. Practical applications of air quality forecasting, which typi-
cally provide predictions over a horizon of hours and days, often require
the handling of missing data due to unobserved relevant variables, sensor
defects or communication outages. In this paper we discuss two aspects
being important when building air quality forecasting models for essential
air pollution parameters such as particular matter and nitrogen dioxides.
Using a specialized architecture of a recurrent neural network, we can build
models even if (1) unobserved variables or (2) missing data are present.

1 Introduction

In the past years, most urban areas experienced periods of increased air pollu-
tion mainly due to emissions from motorized vehicles, industry, agriculture and
household firings. Air pollutants affect the environment and human health by
causing cardio-vascular problems, lung diseases or cancer [1]. Especially, partic-
ulate matter with diameters less than 10µm (PM10) as well as nitrogen dioxide
(NO2) are associated with damages of community health and environment. In
the WHO Ambient Air Pollution database the annual mean of PM10 of 1600
cities in 91 countries have been reported for the period 2008 to 2013. The
average of PM10 concentration is 71µg/m3, while a value of 20µg/m3 is recom-
mended. For air pollution control the realtime hourly prediction of air pollutant
concentrations is necessary. In this paper we focus on the hourly prediction of
PM10 and NO2 for the next 48 hours. However, the proposed methods can easily
be adapted to other air pollutants and timeframes.

Several methods for forecasting air pollution have been proposed in literature
[1–6]. Because physical simulation approaches require detailed knowledge about
chemical and physical processes in our atmosphere, data driven methods, which
are based on measurements only, are more popular in air quality forecasting.

All following publications train and evaluate their models on measurements
in urban areas. The training and test data include air pollutant concentration
measurements, meteorological conditions and forecasts. Some models also use
calendar and/or geospatial information as input.

Since air pollution depends on a non-linear system including the air mass
transport and meteorological models, linear methods usually are not able to
predict air pollution accurately. A more accurate and widely used technique for
the forecasting of air pollutants utilizes artificial neural networks (ANN). They
are able to model even complex, non-linear systems without detailed knowledge
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about the underlying physical system. The authors of [2] implemented several
different neural network models for the prediction of PM10 and NO2 concentra-
tions and compared those with a linear and a deterministic model, where the
ANNs outperformed the other approaches in terms of accuracy.

Catalano et al. [1] predicted the hourly mean concentration of NO2 using
three- and four-layer MLPs and a seasonal ARIMA model. While the ARIMA
model required theoretical assumptions, the MLP models were not able to pre-
dict peaks accurately. Hooyberghs et al. [3] implemented an ANN for forecasting
the daily average of PM10 one day ahead. Their study about the importance of
input variables showed that meteorological conditions significantly influence the
PM10 concentration levels.

Freeman et al. [4] showed that an RNN including a long short-term memory
(LSTM) module performs slightly better than MLP or SVM models. Similarly,
the authors of [5], who used an Elman model to forecast the daily maximum
concentration of different air pollutants, showed that RNNs outperform MLP
and linear regression models.

In real world model applications such as the Siemens City Air Management
(CyAM) tool1 we have to cope with unreliable or missing sensor measurements.
Only a few studies consider the problem of missing data. Some studies discard
missing data of more than a predefined time interval [6] or interpolate miss-
ing data linearly [4]. In this paper we present an RNN model for air quality
forecasting, which explicitly handles missing data using internal forecasts.

2 Methods for modeling air quality

Building forecasting models for the prediction of air quality requires an identi-
fication of the underlying dynamical system of the observed pollution data. In
general, recurrent neural networks (RNNs) are a proven choice to identify and
describe dynamical systems.

2.1 Historically consistent neural networks with architectural teacher
forcing

Conventional RNNs for forecasting use external drivers as input neurons in the
past part (e.g. meteorological or traffic conditions) and assume a negligible
environmental influence in the future.

The historically consistent neural network (HCNN) [7] overcomes this concep-
tual weakness, by not only modeling the output of interest, i.e. the air pollutant
concentrations, but also the external drivers such as weather and traffic data:

state transition st+1 = Atanh(st)

output equation yt = [ Id︸︷︷︸
outputs of interest

, 0︸︷︷︸
unobservable external drivers

]st (1)

1https://new.siemens.com/global/en/company/topic-areas/

intelligent-infrastructure/city-performance-tool.html
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The air pollutant concentrations of the past (yt∈ RN , t < 0) are represented
in the past states st∈ RK ,K > N , while the air pollutant concentrations of the
future (yt∈ RN , t > 0) are non-observable variables represented in the future
states st∈ RK . The fixed matrix [Id, 0] extracts the N observables from the state
st∈ RK . E.g. only the first N elements of the state vector st are observable,
while the other K −N elements are hidden variables.

Missing input neurons and the unfolding across the complete time horizon
make HCNNs difficult and time-consuming to train. Therefore, architectural
teacher forcing (ATF) for HCNNs as shown in Fig. 1 has been introduced in [8].
Note, that the values of two incoming arrows into a single node in Fig. 1 are
summed up. The output layers of the standard HCNN are modified to represent
a fixed target value of zero (illustrated as tar = 0 in Fig. 1). Up to the present
time t = 0 the expected values yt of the air pollutant concentrations in the state
vector are replaced with the actual observed air pollutant concentrations ydt .
Since there are no observed air pollutant concentrations for future time steps
t > 0, the HCNN architecture for the future time steps cannot use ATF and is
kept unchanged.
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Fig. 1: The Historically Consistent Neural Network (HCNN) with architectural
teacher forcing (ATF).

2.2 Handling of unobserved variables in HCNNs

For the prediction of air quality and in contrast to [8] we use Teacher Forcing
not only for the outputs but also for the external drivers, which are available
also in the future part of the neural network. In more detail, our neural network
model consists of three parts:

The observed Air pollutant concentrations as model outputs ydt ∈ RN are
only available in the past part (Tp ≤ t ≤ 0). We focus on particulate matter
with a diameter less than 10µm (PM10) as well as nitrogen dioxide (NO2), but
the model can easily be adapted to other air pollutants.

The External drivers as model inputs udt∈ RM are available in the past and
future part (Tp ≤ t ≤ Tf ). Here we focus on calendar information (such as hour,
weekday, month), the presence of holidays and special events (i.e. christmas),
which may help to explain different traffic situations, and the weather data
including temperature, humidity, solar radiation, and cloud cover. The weather
data is obtained from sensor measurements for the past (t ≤ 0) and from a
commercial weather forecast for the future (t > 0).
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Fig. 2: The extended HCNN architecture comprising external drivers as input
u, the autonomous part as hidden state s and air pollutant concentrations as
output y of the neural network.

Furthermore, the Autonomous part as hidden state st∈ RK ,K > N +M
is available in the past and future part (Tp ≤ t ≤ Tf ) and contains the inter-
nal forecast of model input ut, reconstructed unobserved variables (e.g. time-
dependent emissions of traffic) and the internal forecast of the model output
yt. Note that the activation function tanh is also applied to the errors between
observed and predicted inputs/outputs within the autonomous part of the neu-
ral network. Using this approach, we constantly correct the forecast within the
state-estimation (past) part of the neural network. Technically, when computing
the forecast of air quality in the future part of the neural network, at t > 0, the
error for yt, fed into the non-linear activation function (tanh), is set to zero,
which means that the neural network fully trusts its own forecast based on the
estimated state st−1.

Note that the initial state sTp
and the connector matrix A∈ RK×K are the

only free parameters to be optimized.

2.3 Handling of missing data in HCNNs

In the context of air quality forecasting we often face the problem of missing
data, for example, due to sensor outages or sensory misbehavior, i.e. we receive
data from an unrealistic range. Trivial heuristics for handling missing data often
involve assuming a constant behavior of the variable or using linear interpolation
methods [4]. When using HCNN models, the handling of missing data is possible
from within the neural network architecture without the need to apply trivial
heuristics at the application layer [9].

The HCNN architecture with missing data handling is depicted in Fig. 3
and called HCNN-MD in the following. The vector masky

t∈ RN indicates the
validity of the observations ydt ∈ RN . Compared to Fig. 2, the architectural
teacher forcing mechanism is extended such that the error between the observable
in ydt and its forecast values in yt is masked if the observable is missing or has
an implausible value.
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Fig. 3: HCNN with missing data handling (HCNN-MD)

Through the described mechanism of setting the error of a sensor value in
ydt to zero, the neural network forecast of st+1 is only based on the internal
dynamics of state st at time t. This mechanism is applicable to each teacher
forcing node. Missing data in the external drivers ut, e.g. due to a defect sensor
for measuring wind speed or temperature, are handled analogously.

3 Experiments

We evaluate the presented methods from Sec. 2 on historical air quality data
of a large city in Germany. The complete dataset comprises hourly data from
the years 2008–2018. The data of years ranging from 2008–2016 are taken as
training and validation datasets and the data of the remaining years ranging
from 2017–2018 are used as the test dataset. The neural network architecture
unfolds Tp = 120 hours (5 days) into the past and produces air quality forecasts
for Tf = 48 hours (2 days) into the future on an hourly grid.

For learning we use error backpropagation through time (EBTT) with learn-
ing rate η = 5 · 10−4 for a maximum of 9000 epochs in combination with early
stopping if the test error does not further drop within 1000 epochs. Our results
are based on 10 independent neural network trainings for both architectures
(HCNN and HCNN-MD), where the hidden state s consists of K = 50 neurons.

Missing test data is created artificially through masking out teacher forcing
inputs of emissions (masky

i = 0) and external drivers (maskx
j = 0) for consecu-

tive blocks of 1, 2, 5 and 10 hours, which refers to 36%, 43%, 58% and 70% of
the data. Fig. 4 shows the evaluation results of the emissions forecast for PM10

and NO2 at hour t = +5 on the generalization dataset for years 2017 to 2018.
Compared to a standard HCNN approach, where the missing sensor values are
kept constant, our new model (HCNN-MD) significantly reduces the mean ab-
solute error. Using an HCNN-MD, which predicts the missing data within its
architecture, the forecast based on the internal dynamics of hidden state s is
stabilized when the rate of missing data is increased — even for ten consecutive
hours of missing data.
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Fig. 4: Evaluation results of the emissions forecast at hour t = +5.

4 Conclusion

In this paper we showed how recurrent neural networks can be used in air quality
forecasting that can inherently cope with unobserved variables and different
sources of missing data, i.e. due to sensor failures or outages. In contrast to
state-of-the-art approaches using linear interpolation techniques, we utilize an
RNN with a special architecture being able to significantly reduce the prediction
error even for long intervals of missing data.
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