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Abstract. The paper surveys the topic of tensor decompositions in
modern machine learning applications. It focuses on three active research
topics of significant relevance for the community. After a brief review
of consolidated works on multi-way data analysis, we consider the use of
tensor decompositions in compressing the parameter space of deep learn-
ing models. Lastly, we discuss how tensor methods can be leveraged to
yield richer adaptive representations of complex data, including structured
information. The paper concludes with a discussion on interesting open
research challenges.

1 Introduction

In the latter years, tensor methods have been gaining increasing interest in the
machine learning community. Multiway data analysis is one of their earliest and
most popular application, addressing the processing of large scale and highly
complex data, such as multivariate sensor signals. A tensor can be seen as a
generalization of multidimensional arrays where the traditional algebraic opera-
tors are extended accordingly (e.g. element-wise sum, inner and outer products,
etc). A tensor representation allows to capture complex interactions among in-
put features which would not be evident on flattened data [1]. They are a flexible
data structure allowing to seamlessly reshape vectorial data to a tensor repre-
sentation for multi-linear analysis (tensorization) and viceversa (vectorization).
Clearly, any analysis performed on a full tensorial representation easily results
in so called curse-of-dimensionality problems, with the complexity growing ex-
ponentially with the tensor order. This is where tensor decompositions play a
fundamental role, allowing to reduce the complexity of the representation space
and preserving computational feasibility of the analysis, without a drastic re-
duction in the ability to capture high-order relationships in the data [1]. Tensor
decompositions operate similarly to their matrix counterpart, by decomposing
high-dimensional tensors into a sum of products of lower dimensional factors.

Apart from their direct application to multi-way input data analysis, tensors
are widely adopted as a fundamental building block for machine learning models.
Firstly, they have found application in a variety of machine learning paradigms,
ranging from neural networks [2, 3] to probabilistic models [4], to enable the
efficient compression of the model parameters leveraging tensor decomposition
methods. Secondly, they provide a means to extend existing vectorial machine
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learning models to capture richer data representations, where tensor decompo-
sitions provide the necessary theoretical and methodological backbone to study,
characterize and control the expressiveness of the model [5].

This tutorial paper takes pace from the homonym special session of the 28th
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning to provide a focused survey of the use of tensor decompo-
sitions in deep learning models and applications. Given the constraints of a short
communication, we will not provide a detailed introduction to tensor methods,
whereas we will focus on reviewing three interesting and broad research topics,
following the themes of the contributions presented in the session. An interested
reader will find in literature comprehensive survey works introducing tensor de-
compositions [6], their applications to data analysis [5] and machine learning [7].
The remainder of the paper is organized as follows: Section 2 provides a brief
background on tensors and notable decompositions. Section 3 reviews classical
applications of tensor decompositions to multi-way signal processing and data
analysis. Section 4 discusses more works leveraging decompositions in neural
model compression, while Section 5 focuses on the relevant topic of tensor meth-
ods as enabler for learning more expressive representations of complex data,
including structured samples such as trees, networks and graphs. The paper
concludes with a discussion of interesting open challenges in the field.

2 Tensor decomposition overview

In the following, we provide a brief introduction to tensors and their terminology.
We also present three popular tensor decompositions that are representative of
three classes of methods characterized by different assumptions and aimed to
capture different types of relationships in multi-way data. For a more in-depth
introductions readers are referred to [6] and [1].

2.1 Tensors: definition and terminology

A tensor describes a multilinear relationship between algebraic objects which
span from a scalars to tensors themselves. Its definition can be given based on
different mathematical concepts. For the sake of simplicity, we introduce tensors
based on their intuitive view as a a multi-dimensional array. In this context, a
tensor A ∈ Rn1×···×nd is an element of the tensor product of d vector spaces, such
that the corresponding multi-dimensional array is A(i1, . . . , id) ∈ R, ik ∈ [1, nk]
where:

• ik represents the index along the k-th dimension, known as mode;

• d is the order of A, i.e. the number of modes;

• nk represents the size along the k-th mode.

Subarrays can be extracted from the full tensor by fixing a subset of the ik
indices. Notable subsarrays are the fibers, which are the multi-way equivalent
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of vectors and are defined by fixing every index but one, and the slices, that
are defined by fixing all but two indices. The norm of a tensor is the square
root of the sum of the squares of all its elements, i.e. analogous to a matrix
Frobenius norm. The inner product of two same-sized tensors is the sum of the
element-wise products of their entries. The tensor product is the generalization
of the vector outer product concept to tensors, i.e. through the outer product
of d vectors we can obtain the tensor A ∈ Rn1×···×nd :

A = a1 � a2 � · · · � ad

where ak is the nk-dimensional vector corresponding to the k-th mode in the
tensor. A relevant concept is that of rank-1 tensor, that is a d-way object
which can be strictly decomposed as the tensor product of d vectors. A tensor
decomposition expresses a tensor in terms of a sequence of sum and products
operating on simpler multi-way objects. In the following we summarize three
relevant and popular methods heavily inspired by matrix decomposition.

2.2 Canonical Polyadic (CP) decomposition

The CP decomposition [8] is a representative of the family of rank decompo-
sitions, that seek to express a tensor as the sum of a finite number of rank-1
tensors. There are several analogous formulations for the CP (see [6] for a de-
tailed account), the most general being

A =

R∑
r=1

λra1(r)� a2(r)� · · · � ad(r) (1)

where a1(r) � a2(r) � · · · � ad(r) is the r-th rank-1 tensor and λr ∈ RR. The
value of r is called canonical rank.

2.3 Tucker decomposition (TD)

The TD [9] is a representative of the family of Higher-Order Singular Value
Decompositions (HOSVD), that seek to find the components that best capture
the variation in single modes independently one-another. The TD decomposes
a tensor into a core tensor, defining how the different tensor items interact
and are mixed with each other, and multiple modes matrices. Given a tensor
A ∈ Rn1×···×nd , the TD of its (i1, . . . , id) entry is

A(i1, . . . , id) =

R1∑
r1=1

· · ·
Rd∑

rd=1

G(r1, . . . , rd)U1(i1, r1) . . . Ud(id, rd), (2)

where G ∈ Rr1×···×rd is the core tensor and Uk ∈ Rnk×rk are the mode matrices.
The values Rk denote the rank along the k-th dimension.
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2.4 Tensor Train (TT) decomposition

The TT [10] is a representative of those decompositions assuming that mode
ordering is somehow semantically relevant and should be taken into consideration
in the factorization. The TT approximates a tensor A ∈ Rn1×···×nd through a
sequence of order-3 tensors, each connected to its left and right neighbor in the
mode ordering. More formally, the TT of the (i1, . . . , id) entry of A is

A(i1, . . . , id) =

R0∑
r0=1

· · ·
Rd∑

rd=1

G1(r0, i1, r1)G2(r1, i2, r2) . . .Gd(rd−1, id, rd), (3)

where Gk ∈ RRk−1×nk×Rk are tensors. The value Rk represents the TT-rank
along the k-th mode and it is such that R0 = Rd = 1.

3 Multi-way data analysis

Among the different uses of tensor decompositions in machine learning, multi-
way data analysis has certainly been the first to develop and, yet, the most
popular [1]. By multi-way analysis, we refer to the fact that tensor decomposi-
tions are used as the adaptive method to process, organize and make sense of the
available data and its complex relationships, without resorting to external learn-
ing models. In this brief survey, we focus on those data analysis applications
which, for complexity and scale, are typically within the scope of deep learning
applications.

A type of data relationship that is often addressed through tensor decom-
positions is the sequential one, i.e. where the data collection comprises samples
which follow a complete order. A typical example is timeseries data: this is typ-
ically a 3-way tensor in which slices represent a snapshot of the data at a given
time. Here, tensor decomposition allows to isolate latent structures in the data:
[11], for instance, leverages CP to discover patterns in the temporal evolution of
publishing activities and to perform look-ahead predictions, while in [12] CP is
used for detecting anomalies.

One of the works presented in the special session falls into this line of research.
In [13], the authors discuss an application of tensor decomposition on short text
game commentary data to understand the temporal changes in the effectiveness
of cricket players. To this end, the paper shows the use of a Tucker decomposition
for discrete data. The paper also releases the original data collected and used
for the analysis.

Tensor decompositions can be applied to more general forms of relational
data. For instance, samples characterized by the presence of different types of
relationship (e.g. friendship, content sharing, tagging in social networks) can
be straightforwardly tensorized by modeling each relationship in terms of the
two subjects involved and the type or relation binding them, having a different
tensor slice to represent each of the available relations. In [14], for instance,
it is presented a natural language understanding application, where tensors are
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used to capture multiplicative interactions combining predicate, object and sub-
ject generating aggregated representations for event prediction tasks. In [15], a
Tucker-like decomposition is exploited on three-way tensors to perform collective
learning on network data. The use of tensor methods in graph data processing
appears a lively research field, in particular as regards the prediction of new re-
lations in knowledge graphs, where tensor decomposition show their advantages
in the trade-off between expressivity and computational efficiency [16, 17].

Another successful application of multi-way analysis is in information fusion:
for instance, [18] uses tensors to fuse visual and textual representations. Overall,
the applications discussed in this section seem to share a general limitation, that
is related with the use of tensors with a fixed number of modes, that rarely
exceeds three.

4 Neural model compression

Tensor decompositions have a second major application to machine learning
which is related to their compression ability, in particular when considering the
typical large-scale of data in deep learning. The relationship of tensors with the
deep learning world are particularly evident when considering tensor networks
[5] that provide a general framework for representing the factorization of large
tensors into networks of smaller elements. Tensor networks provide the means to
effectively regulate the trade-off between the number of model parameters and
the predictive accuracy. Further, they put forward a methodological framework
that allows assessing the expressive power of the compressed neural models. The
typical approach to compress whole deep learning architectures is discussed in
detail by [5]. In brief, given an uncompressed deep neural network (DNN), one
can construct the corresponding tensor network representation. This can be
then simplified, by the decompositions discussed in Section 2, to achieve the
desired trade-off between parameterization and predictive accuracy. Finally, the
compressed tensor network is mapped back into the corresponding compressed
DNN. This approach has been successfully applied to Restricted Boltzmann
Machines [19] and convolutional architectures [20, 21].

A different approach to neural model compression leverages tensor decompo-
sition on the single layers of the network. For instance, [3] proposes to efficiently
store the dense weight matrices of the fully-connected layers of a VGG net-
work by leveraging Tensor Train factorization. Conversely, [22] introduces the
Tucker Tensor Layer as an alternative to the dense weight-matrices of neural
networks. They show how to leverage tensor decomposition to drastically re-
duce the number of parameters in the neural layer, also deriving a specialized
form of back-propagation on tensors that preserves the physical interpretability
of Tucker decomposition and provides an insight into the learning process of the
layer.

An alternative perspective over the use of tensor factorization in neural layers
is provided by [23], which introduces a multitask representation learning frame-
work leveraging tensor factorisation to share knowledge across tasks in fully
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connected and convolutional DNN layers.

5 Higher-Order Representation Learning

Our brief overview concludes with the most recent and, possibly, yet less de-
veloped research topic binding deep learning models and tensor decompositions.
This topic mixes the application of multi-way analysis to relational data dis-
cussed in Section 3 with the use of tensors as elements of the neural layer re-
viewed in Section 4. In particular, we consider how tensors can be used to
modify input aggregation functions inside the artificial neuron. Input aggrega-
tion in neurons is typically achieved by a weighted sum of the inputs to the
unit which, for vectorial data, is equivalent to the inner product between a the
weight vector and the input vector. When dealing with tree structured data,
this process in generalized in such a way that, given a specific node in the tree,
the neuron recursively computes its activation by a weighted sum of the acti-
vations of its children, with appropriate weight sharing assumptions. Such an
aggregation function can be easily tensorized, as postulated already by [24], to
capture higher-order relationships between the children encodings.

The higher-order recursive neuron by [24] has long been only a theoretical
model, formulated solely for binary trees. In [25, 26, 27], the model has been
extended to a probabilistic formulation for general n-ary trees which clearly
highlights the tensorial nature of the input aggregation function (that is a n-
way tensor map). Nonetheless, for computational tractability issues, the same
works approximated the tensor with a simple probabilistic factorization largely
equivalent to a weighted sum in neural models. Only recently, [4] has introduced
a proper tensor decomposition of the n-way probabilistic tensor leveraging a
Bayesian Tucker decomposition.

On the side of neural models, [28] discusses the use of a high-order neural
network for structured data that leverages a full 3-way tensor for aggregating
children information in binary parse trees within a natural language processing
application. The second paper [29] in this special session, instead, introduces
what is seemingly the first tensor recursive neurons for n-ary trees. More impor-
tantly, it proposes the use of tensor decompositions as a viable and expressive
trade-off between the simplicity of sum aggregation and the complexity of full
tensor aggregation. Two input accumulation functions are discussed in the pa-
per: one leveraging CP decomposition and the other relying on the Tensor-Train
factorization. Similarly, [30] shows how a tensor recursive neuron can exploit the
Tucker decomposition to control the trade-off between the size of the neural rep-
resentation and the size of the neural parameter space.

6 Conclusions and Research Challenges

The use of tensor decompositions as a fundamental building block in deep learn-
ing models is a growing research topic which is, yet, in its infancy. Throughout
our brief review, we have highlighted that the use of tensor factorization as a
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stand-alone method for multi-way data analysis is seemingly the most mature
research topic. At the same time, tensor decompositions are starting to be heav-
ily used for compression purposes in neural models, throughout well-grounded
approaches that allow to compress full networks while maintaining performance
guarantees, or by tensorization of full neural layers. Lastly, we have singled out
a very recent and promising research direction leveraging tensor decompositions
as input aggregation functions for building higher-order neurons for structured
data processing, to learn more expressive neural representations of structured
information.

The research themes discussed above stimulate interesting research challenges
which can help increasing the effectiveness of deep learning models and deepen
our understanding of their inner workings. Tensorized neural layers put forward
a research question about whether tensorization should only affect the forward
phase of neural models (i.e. computing of the neural activation) or if it has non-
trivial reflections also on the backward phase (i.e. learning). In this respect, [22]
began to discuss how Tucker decomposition can be leveraged in the backward
phase to enhance interpretability of propagated gradients. Along these lines, it
would be interesting to study if tensors can be leveraged to define novel weight
optimization algorithms and whether they can contribute to the discussion con-
cerning dynamics and convergence of stochastic gradient descent [31]. A sec-
ond research challenge relates to representation learning with topology varying
graphs. Literature reports wide use of tensors for multirelational data analysis
on single networks and, as discussed in our review, some early works dealing
with neural processing of collections of tree structured samples. What seems yet
missing is their use in Deep Graph Networks (DGN) [32, 33] that can handle the
most general case of datasets of graph samples with unconstrained topology. It
seems likely that tensorization of the graph neurons would increase their abil-
ity in capturing higher-order structural dependencies between the nodes in the
graphs. This might have a very practical impact on the predictive performance
of the DGN which, as shown in [34], appears often lower than that of dummy
baseline models. On the other hand, it would also be interesting to study how
tensorization can affect the expressivity of DGN from a theoretical perspective
[35, 36].

A key aspect to promote research on tensor decomposition in deep learning is
the availability of software libraries integrating tensor methods within the deep
learning development frameworks. While there are several consolidated libraries
providing stable implementations of tensor decompositions, these are typically
distributed as packages of popular scientific computing environments, such as R,
Matlab and Mathematica, which are less used by the deep learning community.
Nonetheless some contributions are beginning to appear also on this respect:
scikit-tensor [37] integrates some consolidated tensor decomposition (Tucker,
CP and the like) into the scikit-learn universe. More recently, TensorD [38]
provides a Python tensor library built on Tensorflow and providing basic ten-
sor operations and decompositions with support for parallel computation (e.g.
GPU). TensorLy [39] is a Python library implementing a wide range of meth-
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ods for tensor learning, allowing to leverage different computation back-ends
including NumPy, MXNet, PyTorch, TensorFlow, and CuPy. HOTTBOX [40] is a
recent standalone Python toolbox for tensor decompositions, statistical analy-
sis, visualisation, feature extraction, regression and non-linear classification of
multi-dimensional data.
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