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Abstract. We present a memory-efficient quantum algorithm imple-

menting the action of an artificial neuron according to a binary-valued

model of the classical perceptron. The algorithm, tested on noisy IBM-Q

superconducting real quantum processors, succeeds in elementary classi-

fication and image-recognition tasks through a hybrid quantum-classical

training procedure. Here we also show that this model is amenable to be

extended to a multilayered artificial neural network, which is able to solve

a task that would be impossible to a single one of its constituent artificial

neurons, thus laying the basis for a fully quantum artificial intelligence

algorithm run on noisy intermediate-scale quantum hardware.

1 Quantum algorithm for a single artificial neuron

Artificial neural networks are nowadays recognized as a fundamental class of
computational models with huge potential in applications such as pattern recog-
nition, classification, and decision making. Prospective quantum computers
seem particularly well suited for implementing artificial neural networks[1], as
they can in principle represent and store large complex valued vectors, as well
as perform linear operations on such vectors more efficiently than their classi-
cal counterparts [2]. However, current applications are limited to Noisy Inter-
mediate Scale Quantum (NISQ) devices, such as the IBM quantum processors
available for cloud quantum computing with up to 20 non-error corrected su-
perconducting qubits, or trapped ions quantum computers. Here we introduce
an efficient quantum information based algorithm allowing to implement on a
NISQ processor the simplest model of an artificial neuron, the so called “per-
ceptron”, and then we extend it to a multilayered artificial neural network. The
elementary unit of our algorithm, i.e. the quantum neuron, takes a real valued
vector (~i) as the input and combines it with a real valued weight vector (~w):
the output is evaluated as a binary response function applied to the inner prod-
uct of the two vectors. In its simplest realization, ~i and ~w are binary valued
vectors themselves [4]. We show that our quantum algorithm potentially allows
for exponential advantage in storage resources over alternative realizations [5].
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The general quantum information-based procedure relies on the generation of
multipartite entangled states known as hypergraph states [6], and it allows to
optimize the quantum computational resources to be employed. In fact, any
m-dimensional binary input ~i and weight ~w vector (~i, ~w ∈ {−1, 1}m) is encoded
using the m = 2N coefficients in a real equally weighted wavefunction |ψi〉 of N
qubits:

|ψi〉 =
1√
m

m−1∑

j=0

ij |j〉; |ψw〉 =
1√
m

m−1∑

j=0

wj |j〉 . (1)

Here, the states |j〉 represent elements of the computational basis. First, the
algorithm prepares the state |ψi〉: this step is efficiently implemented by applying
an optimal generation procedure [6]. Assuming the qubits to be initialized in
the state |00 . . . 00〉 ≡ |0〉⊗N , we perform a unitary transformation Ui such that
Ui|0〉⊗N = |ψi〉. The second step computes the inner product between ~w and ~i
using the quantum register. This task can be performed by defining a unitary
transformation Uw such that Uw|ψw〉 = |1〉⊗N = |m − 1〉. If we apply Uw after
Ui, it is easily seen that ~w ·~i = m〈ψw|ψi〉 is contained, up to a normalization
factor, in the coefficient cm−1 of the final state |φi,w〉 = UwUi|0〉⊗N . In order to
extract such an information and obtain a non-linear activation function, we use
an ancilla qubit (a) initially set in the state |0〉. A multi-controlled NOT gate
between the N encoding qubits and the target a leads to:

|φi,w〉|0〉a →
m−2∑

j=0

cj |j〉|0〉a + cm−1|m− 1〉|1〉a (2)

By measuring the state of the ancilla qubit in the computational basis the output
|1〉a (i.e., an activated perceptron) is obtained with probability |cm−1|2. Our
quantum perceptron model is particularly suited as an image classifier, since it
allows to interpret a given pattern and its negative on equivalent footing due
to the global phase symmetry in the encoding quantum wavefunction. Overall,

a N -qubit implementation of our model allows to process 22
N

different binary
inputs or weights.

2 Experiments on real quantum processors

First, we implemented the algorithm for a single quantum perceptron both on
classical simulators working out the matrix algebra of the circuit and on cloud-
based IBM-Q real backends [7]. Due to the constraints imposed by the ac-
tual hardware in terms of connectivity between the different qubits, we limited
the experimental proof-of-principle to the N = 2 case. Nevertheless, even this
small-scale example is already sufficient to show all the distinctive features of
our proposed set up. Here, 22 = 4 binary images can be managed, and thus
22

2

= 16 different patterns can be analyzed. All binary inputs and weights can
easily be converted into black and white patterns, thus providing a visual in-
terpretation of the artificial neuron activity, see Fig. 1(b). Remarkably, all the
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Fig. 1: (a) Encoding scheme for the N = 2 case. Input and weight binary
vectors can be seen as 2-by-2 pixels black and white images, labeled with an
integer ki(w) corresponding to the decimal representation of the binary string
n0n1n2n3, where i(w)j = (−1)nj and nj = 0(1) for a black (white) pixel. (b)
Output of the perceptron computed experimentally on the IBM Q-5 “Tenerife”
quantum processor for the N = 2 case. The perceptron successfully singles out
any weight pattern and its negative from all possible inputs. (c) Training of the
perceptron for the N = 4 case. The target cross-shaped pattern is effectively
learned starting from a random initial state.

classification tasks are correctly carried out despite the intrinsic noise on the non
error-corrected NISQ processor, as shown explicitly in Fig. 1(b). Notice that the
global phase symmetry is naturally embedded in the algorithm itself, and the
results show symmetric performances all over the range of possible inputs and
weights. All combinations of ~i and ~w yield results either larger than 0.75 (ideal
value 1) or smaller than 0.3 (ideally 0 or 0.25, depending on the pair of ~i and ~w

vectors), in good quantitative agreement with the expected results. We notice
that the algorithm presented here is fully general and could be implemented
and run on any platform capable of performing universal quantum computation.
While we have employed a quantum hardware that is based on superconducting
technology and qubits, a very promising alternative is the trapped-ion based
quantum computer, in which multi-qubit entangling gates might also be readily
available.

3 Hybrid training of the artificial neuron

To fully assess the potential of this model for classification purposes, we have
implemented an elementary hybrid quantum-classical training scheme for the
N = 4 case, adapting the perceptron update rule to our algorithm. For N = 4,
232 possible combinations of~i and ~w vectors are possible, far too many to explore
the whole combinatorial space as previously done for the 2 qubits. After prepar-
ing a random training set containing pre-labelled positive and negative inputs,
the binary valued artificial neuron is trained to recognize a pre-defined target
vector, ~wt. The latter is chosen to correspond to a simple cross-shaped pattern
when represented as a 4×4 pixels image. This training procedure is obtained by
computing the artificial neuron output through our proposed quantum algorithm
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on the noiseless Qiskit simulator [7], while the optimization of the weight vector
~w is performed by a classical processor. We selected a random vector to start
with, ~w0, and then we let the artificial neuron process the training set accord-
ing to well defined rules, without ever conveying explicit information about the
target ~wt. In Fig. 1c, we report the average value of the fidelity of the quantum
state |ψw〉 encoding the trained ~w with respect to the target state |ψwt

〉 over 500
realization of the training scheme, all with the same initial pattern ~w0 and the
same training set. The quantum artificial neuron effectively learns the target
cross-shaped pattern.

4 A multilayered artificial network

As in the historical development of classical artificial intelligence, we move from
the simple single layer perceptron design to that of a complete feedforward neural
network [8], constituted by several neurons organized in multiple successive lay-
ers. In such artificial neural network design, each constituent neuron receives, as
inputs, the outputs (activations) from the neurons in the preceding layer. Here
we present an original architecture in which two successive layers of the quantum
artificial neurons introduced above [10] are connected through synapses to build
a simple feedforward artificial neural network. The network is used to solve
a classification task that would be impossible for a single artificial neuron. A
scheme of an elementary extension of our previous work is given in Fig. 2(a), in
which the circles indicate quantum artificial neurons, and the vectors ~wi refer
to their respective weights as before. We chose a simple design, with a single
hidden layer and a single binary (i.e., yes/no) output neuron to solve an ele-
mentary but quite meaningful problem: the network should be able to recognize
wether the 2 × 2 input image contains lines, regardless of the fact the lines are
horizontal or vertical. All the other possible input images should be classified
as negative. The working principle of the network is straightforward: the top
quantum neuron of the hidden layer is activated if the input vector has vertical
lines, while the bottom neuron does the same for the case of horizontal lines,
then the output neuron in the last layer ”decides” whether one of the previous
neurons has given a positive outcome.

As we mentioned above this problem is significant because it is impossible
to solve by using a single layer perceptron model. Indeed the set of patterns
that should yield a positive result include vectors that are orthogonal (those
representing horizontal lines are orthogonal to those representing vertical lines)
and vectors that are opposite (for instance the vector corresponding to a vertical
line on the left column is opposite to the vector corresponding to a vertical line
on the right column). Given an input vector ~v1 and a weight vector ~w a single
quantum neuron would output a value proportional to ~w · ~v1 i.e. cos2(ϑ) where
ϑ is the angle formed by the two vectors. Now if we take a second input vector
~v2 ⊥ ~v1 the output would clearly be proportional to sin2(ϑ). It is therefore
impossible to find a weight ~w capable of yielding an output activation larger
than 0.5 for both ~v1 and ~v2, i.e. it is impossible to find an hyperplane correctly
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Fig. 2: (a) scheme of the quantum deep neural network studied in this work,
where each node is represented by a quantum artificial neuron, a hidden layer
made of two neurons is interposed between an input layer and a single output
neuron; (b) scheme of the experimental implementation of the quantum deep
neural network represented in (a) on the IBM Q “Poughkeepsie” quantum pro-
cessor, in which the two neurons of the hidden layer are encoded into a suitable
combination of three qubits on the real hardware, and the output layer is made
of a single qubit. Quantum synapses are implemented through multi-controlled
operations [10].

separating the configuration space. Conversely, when using a single classical
perceptron, it is well known that it is impossible to find a hyperplane capable of
classifying a set containing opposite vectors [9].

We show the potentialities of NISQ hardware by generalizing the quantum al-
gorithm in Fig. 1, i.e. by implementing the artificial neural network of Fig. 2(a).
First, we have modeled and implemented the hidden and output layers in a cir-
cuit based model of quantum computation, and connected them through “quan-
tum synapses”, which are remarkably able to set the input of the last neuron
based on the outputs of the hidden layer in a quantum coherent way. Hence, we
tested this algorithm on a state-of-the art 20-qubit IBMQ quantum processor.
In particular, we obtained preliminary experimental results with a 7-qubit calcu-
lation on the IBMQ Poughkeepsie quantum processor, whose schematic layout is
shown in Fig. 2(b), in which a possible combination of the qubits to be employed
for such calculation is highlighted. The experimental results were analyzed with
the inclusion of error mitigation techniques. The overall outcome shows that,
despite some residual quantitative inaccuracy, all the target patterns of the work-
ing network are correctly recognized and all other patterns are rejected, which
represents a crucial step in view of building feedforward deep neural networks
on universal quantum computing hardware.

5 Conclusions

The results presented here form a first proof that neural networks with architec-
tures equivalent to classical neural networks can be implemented on quantum
processors. It is important to notice that the present implementation can be
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equivalently realized via a semi-classical approach in which the ancillas of the
neurons in a layer are measured and the weights of the neurons in the next layer
are set using classically controlled unitary operations. Another semi-classical
approach could consist in using only classical neuron layers after a few quantum
neuron layers. Such a design could be beneficial in tapering convolutional neu-
ral networks. The exponential memory advantage of quantum neurons could be
used convolutional filters for pattern too complicated to be treated classically,
while the simpler parts of the network would be run on tradtional hardware.

The current approach of running the whole network in fully quantum coherent
way is however interesting as it points to the possibility of putting the network
in a superposition state for different parameters of its constituent neurons. This
result, if achieved, would be the first step toward the possibility of usign quantum
algorithms for the training of neural networks.
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