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Abstract. Similar as traditional algorithms, deep learning networks
struggle in generalizing across domain boundaries. A current solution is
the simultaneous training of the classification model and the minimization
of domain differences in the deep network. In this work, we propose a
new unsupervised deep domain adaptation architecture, which trains a
classifier and minimizes the difference of spectral properties of the co-
variance matrix of the data. Evaluated against standard architectures
and datasets, the approach shows an alignment with respect to the data
variance between related domains.

1 Introduction

Recent developments in deep learning models have led to a significant increase in
predictive performance in various applications, such as computer vision or speech
recognition. Despite the outstanding results and multiple efforts to improve
the generalization capabilities of deep learning networks, they still struggle to
generalize across domain boundaries. This is caused due to differences in the
distributions between the different domains [1].

A current solution to this problem is to over-generalize the networks by train-
ing on massive datasets and then specialize these networks by fine-tuning them
to the desired target domain [1]. However, this solution assumes that there is
a sufficient amount of labeled data in the target domain, but in many cases,
this cannot be guaranteed [2]. So if fine-tuning is not feasible, unsupervised
deep domain adaptation techniques are used to learn a network that achieves
good classification results in the target domain [3]. Unsupervised deep domain
adaptation makes the following assumptions: There exists a pre-trained over-
generalized network, a small amount of labeled data in a source domain, and a
small amount of unlabelled data in the target domain [4]. The goal is to learn a
network that achieves good classification results and at the same time, reduces
the differences between the distributions of the source and target domains, to
apply it in the target domain.

In this work, we study the effect of the generalization properties of deep net-
works by adjusting the spectrum of the output distribution of higher layers of
the network. We show that this is an implicit case of minimizing the difference
of variance or second central moment of the distributions. Based on this, Section
3 introduces a new Deep Domain Adaptation architecture that simultaneously
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learns a classifier and a domain invariant representation. We present the evalua-
tion of our Spectral Alignment loss (LAS) in the Deep Spectral Network (DSN)
against other established approaches and data sets in the field in Section 5. A
summary and open problems are provided at the end of this paper.

2 Background and Related Work

For unsupervised deep domain adaptation [5, 6, 7, 8], we consider a labeled

source dataset Ds = {Xs, Ys} = {xi, yi}ni=1
i.i.d.∼ p(S) in the source domain S

and an unlabeled target dataset Dt = {Xt, Yt} = {xj , yj}mj=1
i.i.d.∼ p(T ) in the

target domain T with same label space ∀i, j : yi, yj ∈ C but different distributions
p(S) 6= p(T ). The overall goal is still to learn a classifier model, but additionally,
it should generalize in a related target domain. Initially, we start with Ds

and learn parameters θ of a neural network fθ : X × Y minimizing the risk
R[L(f(x; θ), y)]. The loss can be defined for example as the cross-entropy loss
L(f(x; θ), y) = −

∑
c∈C yclog(fθ(x)c). The loss is part of the empirical objective

function
arg min

θ
E[L(f(Xs; θ), Ys)]. (1)

The network itself consists of multiple hidden layers and an output or classi-
fication layer. Consider g(Xs; θ)l = a(f(x; θ)l)l as the layer l with an activation
function a(·)l and parameter layer f(·)l given source data and for target data
g(Xt; θ)l analogously.

Recent work in the field uses one or more higher layers, i.e. the fully con-
nected layers of the network to adapt the output distributions of the (hidden)
layers g(Xs; θ)l and g(Xt; θ)l[5]. This leads to very individualized approaches.
To measure the difference between the output distributions of the network, some
type of dissimilarity measure d : g(Xs; θ)l × g(Xt; θ)l) → R+ is employed and
added to the objective function:

arg min
θ

E[L(f(Xs; θ), Ys)] + λd(g(Xs; θ)l, g(Xt; θ)l). (2)

The dissimilarity measure is used as a regularization. The parameter λ ∈ [0,∞]
controls the trade-off between aligning the output distributions and minimizing
the classification objective. By setting a high λ, the distributions are very closely
aligned with each other, but the feature representations are degenerated, causing
a high loss [2].

In the following, we will discuss prior related work, minimizing the statistical
properties [1] of source and target distributions of the output of some layer.
A commonly used dissimilarity measure is the Maximum Mean Discrepancy
(MMD) [9], which is the difference in mean of two matrices in a reproducing
kernel Hilbert space (RKHS). In [6], the gradient of the MMD with respect to
the parameters is used additionally for the parameter updates. The work in
[2] uses the MMD to directly propagate the update step with respect to data,
causing the parameters to change accordingly. The original MMD considers
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only the prior distribution, while in [8] (used in the JAN network), a joint-
MMD was proposed minimizing the conditional distribution discrepancy. The
minimization of MMD in the proposed networks can be seen as an alignment
of statistical moments given a particular kernel, e.g. RBF-Kernel, of the two
domains [10]. The authors of [5] proposed the Central Moment Discrepancy
for domain adaptation, which strives for explicitly minimizing higher central
moments. The CORAL Loss [7] is most related to us, minimizing the difference
of the full covariance matrices between two domains. Our proposal is a particular
case of CORAL, by aligning only the singular value spectrum of the domains. As
a side effect, we are also aligning the covariances. However, our DSN minimizes
a diagonal matrix, which is easier to compute. Further, we do not rely on a
particular kernel matrix nor kernel function, but any positive semi definite (psd)
kernel can be used. Due to this flexibility, it is also rather easy to integrate low-
rank approximation techniques. An interpretation of our loss is the minimization
of the second central moment between domains.

3 Deep Spectral Alignment

In this section, we present the spectral alignment and the modified network
architecture. Let Xl

s and the Xl
t be the output of source and target from layer

k, respectively. The Singular Value Decomposition (SVD) of these outputs is
given with Xl

s = UΣVT and Xl
t = LTRT . Here R,V ∈ Rd×d, U ∈ Rn×n and

L ∈ Rm×m are matrices. Further, U,L,V and R are column-orthogonal. Σ is a
n×d matrix wherein all entries σij = 0 iff i 6= j and T is a m×d matrix wherein
all entries tij = 0 iff i 6= j. Furthermore, by σk we denote the singular value in
the k-th column of Σ. For a linear covariance function, we can decompose the
respective kernel with the eigenvalue decomposition and the SVD into

K = CDC−1 = XTX = (VΣUT )(UΣVT ) = CΣ2C−1, (3)

where C are the eigenvectors (right singular values of X) and D are the eigen-
values of K. The singular values Σ of X are the square root eigenvalues of K.
Accordingly, the entries of the diagonal of D,Σ2 give the variance of the columns
of K. Assuming that the expected values µs, µt = 0 of Xl

s and Xl
t, minimizing

the difference between Σ and T is the same as minimizing the variance of the
covariance matrix. Due to the low number of parameters in comparison to other
domain adaptation approaches [11, 7, 8], the spectral loss is easy to minimize.

For domain adaptation, we implement for the discrepancy measure d(·) in
Eq. (2) the spectral loss

LSA =
1

n
||Σ−T||2F , (4)

to extend the classification loss. Where 1
n is a scaling constant and || · ||2F denotes

the squared Frobenius norm. Because we assume equal batch sizes for source and
target data, we have m = n. Minimizing Eq. (4) will align the spectra of source
and target. Accordingly, the variances of the outputs in layer l are aligned
to each other and a domain invariant representation for source and target is
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learned. In the following, the derivative of Eq. (4) with respect to the data is
given, which allows the optimization of the spectral parameters. Data-driven
derivations are common in deep domain adaptation [5, 7, 8, 10]. Due to lack
of space, we only give the derivative with respect to the source data and in the
following xij ∈ Xl

s. The derivative with respect to target data is straightforward.
For computing ∂LSA

∂xij
, it is easy to see that the partial derivative of ||Σ − T||2F

has the same form like ||Σ||2F , because T is constant and the problem reduces
to compute the partial derivative of all σk ∈ Σ with respect to xij .

We follow the solution of [12] and analyze

∂Xl
s

∂xij
=
∂(UΣVT )

∂xij
=

∂U

∂xij
ΣVT + U

∂Σ

∂xij
VT + UΣ

∂VT

∂xij
. (5)

Let Ωij
U = UT ∂U

∂xij
and let Ωij

V = ∂VT

∂xij
V depending on xij . By multiplying Eq.

(5) with the orthogonal matrices UT and V from left and right respectively,

and inserting the definitions of Ω(·) we obtain UT ∂Xl
s

∂xij
V = Ωij

UΣ + ∂Σ
∂xij

+ ΣΩij
V .

Because Ωij
U and Ωij

V are anti symmetric, zero on the diagonal and Σ is diagonal,

the terms Ωij
UΣ and Ωij

V Σ are zero [12]. Also
∂Xl

s

∂xij
= 0, for all entries xkl with

(k, l) 6= (i, j) and 1, otherwise. Putting all together we obtain ∂σk

∂xij
= uikvjk.

Looking again at Eq. (4), the derivative of LSA is given by the derivative of
σk w.r.t. xij . Hence, the derivative of the loss function is

∂LSA
∂xij

=
1

n

∂σk
∂xij

[√
Σnk=1(σk − tk)2

]2

=
2

n
Σnk=1(σk − tk)

∂σk
∂xij

(6)

=
2

n
Σnk=1(σk − tk) · uikvjk. (7)

The loss can be integrated into any layer as regularization term or simultaneously
used in multiple layers, as suggested by [8]. Here we use the proposed approach
in the last layer.

4 Experiments

We evaluate our network against other recent approaches on the standard im-
age dataset Office-31. Source code and datasets are available at github.com/

ChristophRaab/DSN. The study follows the standard protocol for evaluating
unsupervised deep domain adaptation [8] and utilizes all available source data
for learning and all target data for knowledge transfer and evaluation. Other
datasets or sampling strategies [13] are omitted due to space issues. The Office-
31 dataset contains images from three separated domains, namely Amazon, we-
bcam, and digital single-lens reflex camera (DSLR). Each domain has 31 classes
with objects frequently located in the office. Since all three domains are acquired
with different settings and photo cameras, the adaptation problem is to train
on one domain and to test on another. The results are a summary from five
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Dataset AlexNet [15] DDC [15] DAN [11] JAN [8] CORAL [7] DSN
A → W 48.0 (2.4) 49.3 (0.8) 62.8 (0.8) 63.0 (2.5) 59.9 (1.0) 59.6 (2.8)
A → D 55.6 (2.2) 59.0 (2.0) 63.6 (0.8) 63.1 (1.4) 59.6 (1.0) 62.3 (0.8)
W → A 54.9 (0.5) 55.2 (1.6) 55.6 (0.8) 55.8 (1.3) 53.4 (1.3) 56.2 (0.5)
W → D 98.4 (0.3) 98.5 (0.5) 98.8 (0.2) 98.5 (0.4) 99.0 (0.3) 98.4 (0.2)
D → A 53.4 (0.7) 53.7 (0.8) 55.2 (1.3) 56.1 (0.5) 52.3 (1.1) 56.5 (1.6)
D → W 94.3 (0.7) 94.7 (0.7) 95.8 (0.2) 95.7 (0.5) 94.8 (0.3) 95.0 (0.7)
Mean 67.4 (1.1) 68.4 (1.1) 72.0 (0.7) 72.0 (1.1) 69.8 (0.8) 71.3 (1.1)

Table 1: Mean prediction accuracy with standard deviation in brackets on the
Office-31 dataset over five runs.

test runs on the dataset combinations A→D (Amazon to DSLR), A→W, D→A,
D→W, W→A, and W→D and presented as mean accuracy with standard de-
viation. The parameters are optimized as shown in [14]. The baseline network
is Alexnet [15], which is pre-trained on the Imagenet dataset. For the Alexnet,
we follow [7] and modify the classifier layer to have 4096 input dimensions and
31 output dimensions. For a fair comparison, we implement our loss and all
competitive losses in the classification layer of the network. Hence, the loss is
propagated through all layers of the network. All approaches are trained with a
learning rate of 1e−3 and momentum stochastic gradient descent with a decay
of 0.9. As suggested in [7], the classifier layer has ten times the learning rate as
the remaining network, i.e. 0.01. We used 50 epochs to retrain the network and
λ = 0.5 for all networks.

Results are reported in Tab. 1. Our DSN is compared against the unsuper-
vised deep domain adaptation algorithms DDC [15], DAN [11], JAN [8], and
CORAL [7] and vanilla AlexNet as baseline. The best performing network is
DAN, but the performance gap in accuracy from DAN to us is, on average, only
0.7 %. Because CORAL is worse than DSN in the performance experiments, we
conclude that minimizing the spectral loss contributes more to the adaptation
process of the network as minimizing the difference of a covariance matrix. The
minimization of non-linear kernel measures as in DDC or DAN does not nec-
essarily lead to better adaptation capacities. Finally, the tuning of the DSN is
not expensive because it has no tunable parameters besides the regularization
parameter, which makes it easier to apply compared to other approaches. The
convergence behavior is not shown due to space issues.

5 Conclusion

We studied the effect of the spectral alignment in deep networks between two
domains. The proposed Deep Spectral Network has competitive performance to
state of the art unsupervised deep domain adaptation approaches. The proposed
spectral loss is easy to optimize and the loss has no free parameters. This makes
the approach more favorable compared to other networks, as the DSN is more
comfortable to apply while maintaining competitiveness. In the future, non-
linear kernels and multi-layer losses should be studied.
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