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Abstract. This paper designs a deep model to detect PCB defects
from an input pair of a detect-free template and a defective tested image.
A novel group pyramid pooling module is proposed to efficiently extract
features in various resolutions to predict defects in different scales. To
train the deep model, a dataset including 6 common types of PCB defects
is established, namely DeepPCB, which contains 1,500 image pairs with
annotations. Besides, a semi-supervised learning manner is examined to ef-
fectively utilize the unlabelled images for training the PCB defect detector.
Experiment results validate the effectiveness and efficiency of the proposed
model by achieving 98.6% mAP @ 62 FPS on DeepPCB dataset. Deep-
PCB is now available at: https://github.com/tangsanli5201/DeepPCB.

1 Introduction

With the rapid development of the consumer electronic products, printed circuit
board (PCB) manufacturing has drawn more and more attentions. The quality
of PCB has directly effects on the reliability of subsequent products. Thus, PCB
defect detection is a key process in PCB production. In practice, a defect-free
template image will usually be rectified manually from a defective PCB image
and then be used in defect detection algorithms [1, 2] to inspect other PCB
images in the same format. Earlier works on PCB defect detection focus on
wavelet-based algorithms [3], which decrease the computation time compared to
those based on image difference operation. Recently, [2] develops a hybrid algo-
rithm by using morphological segmentation and simple image processing tech-
nique. [1] incorporates proper image registration to solve the alignment problem,
which however consumes more processing time. These algorithms relying on im-
age difference and logic inference sometimes fail due to: (a) the complicated or
unaccounted defect patterns; (b) irregular image distortion and offset between
the template and tested image pair; (c) over-sensitivity of hyper-parameters, e.g.
the kernel size of erosion or dilation operation.

To enhance the generalization ability of the PCB defect detector, we consider
to use deep neural network, which has shown its strong generalization aiblity on
object detection task [4]. PCB defect detection is essentially an extension of ob-
ject detection with slight difference: the pair-wise input, including a defect-free
template image and a defective tested image. While deep methods [4, 5, 6] have
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Fig. 1: A pair of (a) a defect-free template image and (b) a defective tested image
with annotations of defect types and annotations in the DeepPCB dataset.

achieved promising progress, the requirements for large training data becomes
a new challenge. To solve this problem, new datasets and some semi-supervised
techniques are considered. The weight-averaged consistency is introduced in [7]
with impressive results that the large amount of unlabeled samples can further
boost the performance of deep models in a semi-supervised learning manner.
The organization of this paper are as follows. In next section, the first dataset
for PCB defect detection is established, including 1,500 aligned image pairs with
precise annotations. A PCB defect detection network is proposed in section 3
based on the novel group pyramid pooling (GPP) module, which improves the
model’s ability of detecting PCB defects in various scales. Extensive experiments
are presented in section 4, which validates the effectiveness and efficiency of the
proposed PCB defect detector and its semi-supervised learning framework.

2 The DeepPCB Dataset

We contribute DeepPCB to the community, which contains 1,500 PCB image
pairs covering six types of PCB defects. Each pair consists a 640 x 640 defect-
free template image and a defective tested image. We separate 1,000 image pairs
as training set and the remaining 500 image pairs as test set.

We use the axis-aligned bounding box with a class ID for each defect in the
tested images. As illustrated in Fig. 1, we annotate six common types of PCB
defects: open, short, mousebite, spur, pin hole and spurious copper. Since there
are only a few defects in the real tested images, we manually augment some
artificial defects on each tested image according to the PCB defect patterns [§],
which leads to around 3 to 12 defects in each image pair.

Following the popular benchmark on object detection datasets [9], average
precision rate is used for evaluation. A detection is correct only if the intersection
of unit (IoU) between the detected bounding box and any of the ground truth
box with the same class is larger than 0.33.
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Fig. 2: An overview of the proposed model. The backbone is VGG16-tiny [10].
'BN’ denotes batch normalization. Up-sample is implemented by bilinear inter-
polation and the target size is the same as the first input of each concatenated
group. Each feature group in GPP provides predictions in different scales.

3 Approach

3.1 Network Structure

Instead of directly calculating the difference between the input image pair, a
convolutional backbone with max pooling operation is first deployed for extract-
ing features from the input images. Then, the differences between the features
of template and tested images are calculated. A novel group pyramid pooling
module is followed to obtain features in various resolutions. Similar to [4, 11],
we produce predictions of different scales from feature maps from the backbone.
In Fig. 2, we show the structure of the proposed PCB defect detection model.

Group Pyramid Pooling (GPP) module Different from the feature pyramid
network (FPN) [11], which merges features in different resolutions from coarse
to fine with increasing computational and storage cost, GPP module obtains
features of various resolutions from a pyramid pooling structure. Each group
predicts PCB defects from the pre-generated default boxes [4] in a specific scale.
Prediction from convolutional feature maps Each output feature map from
GPP module can produce a fixed set of detection predictions by several convo-
lutional filters. As illustrated in the Fig. 2, at each location in output maps,
it outputs the prediction of (i) classification: six types of PCB defects and one
backgroud class, and (ii) localization: the translation offset between the cen-
troids and the scaling ratios between the width and height of the default boxes
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and the targets. Finally, non-maximum suppression (NMS) is applied to all the
predictions from different scales to obtain the final prediction results.
Semi-supervised settings for PCB defect detector Following [7], an ex-
tra teacher model sharing with the same network structure with the detector
is designed to generate pseudo labels in the semi-supervised schedule. For the
annotated image pairs, the detector is trained normally according to the su-
pervised loss function. For the image pairs without labels, the consistency loss
between the prediction of detector and the teacher model is used to train the
detector. The teacher model updates its parameters according to the detector
in an exponential moving average manner.

3.2 Objective Function

Following the matching strategy in SSD [4], each ground truth box is first
matched to the default box [4] of the maximum jaccard overlap [12]. Then,
the default boxes are matched with any ground truth box whose jaccard overlap
is higher than 0.5, which can be described as D = {(d, g)|jaccard_overlap(d, g) >
0.5)}, where d = (d°®,d®,d”,d") and g = (9%, g%, g*, g") are the central point,
width and height of default box and ground truth box, respectively. Then, the
objective function for box regression is defined as:

Lieg = Z Z smoothLl(liL - t;),

(dn,gn) €D i€cx,cy,w,h

where smoothy,; (x) = 0.522,if |z| < 1 or |z|—0.5 otherwise. I, is the predicted
offset between the default bounding box d,, and the matched ground truth box
gn- tn is the target offset, which is normalized by the default box size: t =
(9}, —d})/d},, € {ca,cy}, and t}; =log(gy;/dy;), k€ {w,h}.

The classification loss for the type of PCB defect is calculated by cross-
entropy, where we randomly select background default boxes to keep the ratio
of the background (Bg) to foreground (Fg) bounding boxes at around 3:1 :

Las=— Z IOg(CI;L)_ Z IOg(Cg),

dn€Fg dnE€Bg

where cP is the predicted probability that the target in the box d,, belongs to
class p. Notice that the class index for background box is set to 0.

The overall objective function for training the detector in supervised manner
is L(w®; X) = Y 4 (Lyeg + aLeis) where w® is the trainable parameters of the
detector and X is the annotated samples. As for the semi-supervised scenario, let
U be the unlabelled set, f7 and f° be the teacher model and the detector. Then
the objective function for semi-supervised framework is Lsemi(w®; {X,U}) =

L(wS;X) + B3, cy 1f7 (xu) — f5(xu)||?, where the parameters of the teacher

model at t step w? updates by w =ywl | + (1 —y)w?.
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4 Experiments

In this section, based on DeepPCB dataset, extensive experiments are carried
out to evaluate the proposed model for PCB defect detection as well as some
advanced object detection models [4, 6, 5], for which we make slight modifications
in the input and output: (i) a convolutional backbone, e.g., VGG-tiny [10] is first
applied to efficiently extract features of both the template and tested image; (ii)
feature subtraction is adopted to merge the last feature maps of the backbone
from the input image pair. We train our model on a single Titan X GPU using
Adam with initial learning rate 10~3, 0.0005 weight decay, 500 epochs and batch
size 16. The learning rate decays 0.33 every 100 epochs. The hyper-parameters
are set as a« = =1 and v = 0.99.

Results on Fully-Supervised Learning This section provides quanti-
tative evaluations for various methods of PCB defect detection on DeepPCB
dataset. For data augmentation of deep models, the template and tested image
are simultaneously randomly horizontal/vertical flipped with probability of 0.5
and then they are randomly cropped into size of 512 x 512. In Table 1, we
illustrate the evaluation result on DeepPCB dataset.

Table 1: Evaluation results of AP(%) on DeepPCB dataset. "AP’ or '"MP’ de-
notes the contrastive settings of average pooling or max-pooling in GPP module.

Method mAP | open short mousebite spur copper pin-hole | FPS
LP. [2] 89.3 88.2 87.6 90.3 88.9 91.5 89.2 78
SSD [4] 95.9 93.1 94.5 95.7 96.7 96.9 98.7 64
YOLO [6] | 92.6 90.5  92.0 93.1 93.3 94.9 92.6 34
Faster [5] 97.6 96.8  95.4 97.9 98.7 97.4 99.5 4

ours-AP 97.1 97.0  93.5 98.7 96.6 97.4 99.9 62
ours-MP 98.6 | 98.5 98.5 99.1 98.2 98.5 99.4 62

Results on Semi-Supervised Learning We also evaluate the detector
trained in semi-supervised manner by randomly removing the annotations of
some training samples. Table 2 shows the performance of the detector via dif-
ferent numbers labeled samples, which demonstrates the effectiveness the semi-
supervised learning in PCB defect detection task.

Table 2: Evaluation results in the semi-supervised setting. SSDg¢, refers to only
using the certain number of labeled samples to train the detector in a fully-
supervised manner, while SSDgep,; refers to using both the labeled and the rest
unlabelled samples in the semi-supervised way.
labeled samples | 50 100 200 300 1000
SSDtun 86.5 90.7 92.1 94.6 98.6
SSDsemi 89.3 924 935 952 98.6
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5 Conclusion

This work contributes DeepPCB, a large-scale PCB dataset containing six com-
mon types of PCB defects with annotations of positions. A novel deep module
is proposed, namely group pyramid pooling, that efficiently combines features
in different resolutions and makes predictions for detecting PCB defects in var-
ious scales. Through extensive experiments, we demonstrate that the proposed
architecture with GPP module can achieve state-of-the-art performance while
consuming very low computational time.
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