
Similarities between policy gradient methods in
reinforcement and supervised learning

Eric Benhamou1,2 and David Saltiel2,3

1- Lamsade Dauphine, 2- AI Square Connect, 3- ULCO LISIC

Abstract. Reinforcement learning (RL) is about sequential decision
making and is traditionally opposed to supervised learning (SL) and un-
supervised learning (USL). In RL, given the current state, the agent makes
a decision that may influence the next state as opposed to SL where the
next state remains the same, regardless of decisions taken. Although this
difference is fundamental, SL and RL are not so different. In particular, we
emphasize in this paper that gradient policy methods can be cast as a SL
problem where true label are replaced with discounted rewards. We pro-
vide a simple experiment where we interchange label and pseudo rewards
to show that SL techniques can be directly translated into RL methods.

keywords: Policy gradient, cross-entropy, Kullback Leibler divergence.

1 Introduction

In RL, policy gradient methods (PGMs) are frequently used [1, 2, 3, 4]. PGMs
are RL techniques that rely upon optimizing the parameters of policies to get the
highest expected cumulative reward using gradient descent optimization. PGMs
have been popularized in REINFORCE [1] and in [2] and have received wider
attention with Actor-Critic methods [5, 6] in particular when using deep PGMs
[7] that combine policy and value methods.

When looking in detail in REINFORCE [1], we can remark that the gradient
term with respect to the policy can indeed be interpreted as the log term in the
cross-entropy in SL. Moreover, if we notice that a RL problem can be reformu-
lated as a SL problem where true labels are changed by expected discounted
future rewards, and estimated probabilities by policy probabilities, the link be-
tween RL and SL becomes obvious. Besides, leveraging the tight relationship
between cross-entropy and Kullback Leibler divergence, we can interpret the en-
tropy regularization terms very naturally. This is precisely the objective of this
short paper: call attention to the tight connection between RL and SL to give
theoretical justifications of some techniques used in PGMs.

The paper is organized as follows. In section 3, we recall the various choices
of functional losses in SL and exhibit that cross-entropy is one of the main
possibilities for loss functions. We flaunt the relationship between cross-entropy
and Kullback Leibler divergence, harping on the additional entropy term. In
section 4, we present PGMs. We rub in the interpretation of RL problems as a
modified cross-entropy SL problem. We conclude in section 5 with a financial
numerical experience using deep PGM, stressing that in the specific case of
actions that do not influence the environment, the difference between RL and
SL is very tenuous.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

721

2 Related Work

Looking at similarities and synergies between RL and SL together was for a long
time overlooked. This can be easily explained as the two research communities
were different and thought they were laboring on incompatible or at least very
different approaches. In an attempt to connect SL problem to RL, [8] and
[9] noticed however some connections. [8] showed that any SL problem can be
relatively easily recast into a one-step RL-learning problem. [9] suggested that in
RL, any reward or value function can by explained by goals and that ultimately
goals can embed some SL features. However, these connections are only weak
and somehow do not show that RL can be recast as a SL problem, which is the
purpose of this work. Another stream of research relates also to our approach
and is Imitation Learning.

Imitation learning [10] is a classic technique for learning from a human
demonstration. Imitation learning uses a supervised approach to imitate an ex-
pert’s behaviors, hence doing a RL task to accomplish a SL one. DAGGER [11]
is considered to be the mainstream imitation algorithm. It requests an action
from the expert at each step. It uses an action sampled from a mixed distribu-
tion from the agent and the expert. This has led to numerous extensions of this
algorithm and in particular a deep version of it (see [12] for a survey on these
methods).

All of these works show that RL and SL are not as opposed as one may have
thought. We argue here that, ignoring for a while the issue of feedback effect of
the action on the next state environment, PGMs can be reformulated as a SL
task where true labels are changed into future expected reward.

3 Supervised Learning

SL is quite general and encompasses both SL classification and SL regression.
The goal of SL classification is to infer a function from labeled training data
that maps inputs into labeled outputs. The finding of the function parameters
is done traditionally through the optimization of a loss function. SL classifier’s
parameters are the ones of the optimal solution of the optimization program. To
keep things simple, let us take a binary classification problem. Let us assume we
observe Dn = {(X1, Y1), . . . , (Xn, Yn)} that are n independent random copies of
(X,Y) ∈ X × Y. Features X live in some abstract space X (Rd for instance)
while labels Y is are binary: Y = {−1, 1}. Naturally, one would like to find a
function f : X 7→ Y that best maps X to Y . To assist in our goal, we take a loss
function : {−1, 1}×{−1, 1} 7→ R that measures the error of a specific prediction.
The loss function value at an arbitrary point (Y, Ŷ) reads as the cost incurred
when predicting Ŷ while true label is Y . In classification the loss function is
often a zero-one loss, that is, (Y, Ŷ) is zero when the predicted label matches
the true label Y = Ŷ and one otherwise. To find our best classifier, we look for
the classifier with the smallest expected loss. In other words, we look up for the
function f that minimizes the expected -risk, given byR(h) = EX×Y [(Y, f(X))].

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

722

Typical loss functions are mean square, mean absolute, cross-entropy, logit,
hinge and exponential loss. We will show shortly that cross-entropy plays a
special role when reconciling SL and RL.

4 Reinforcement Learning Background

RL is usually modeled by an agent that interacts with an environment E over
a number of discrete time steps. At each time step t, the agent levies a state
st and picks an action at from a set of possible actions A. This choice is made
according to its policy π, where π is a mapping from states st to actions at.
Once the action is decided and executed, the agent levies the next state st+1

and a scalar reward rt. This goes on until the agent reaches a terminal state.
The expected cumulated discounted return Rt =

∑∞
k=0 γ

krt+k is the sum of
accumulated returns, where at each time step, future returns are discounted
with the discount factor γ ∈ (0, 1]. At time t, a rational agent seeks to maximize
its expected return given his current state st. We traditionally define

• the value of state s under policy π as V π(s) = E [Rt|st = s]. It is simply
the expected returns for following policy π from state s ([13]).

• the action-value function under policy π and initial action a as Qπ(s, a) =
E [Rt|st = s, a]. It is simply the expected returns for selecting action a in
state s and following policy π ([1]).

Both the optimal value function Q∗(s, a) = maxπ Q
π(s, a) and the optimal value

of state V ∗(s) = maxπ V
π(s) satisfy Bellmann equations.

Whenever states and action are too large, we are forced to represent the
action-value function with a function approximator, such as a neural network.
Denoting the parameters θ, the state action function is a function of s, a and θ
and is generally called the ’Q’ function as follows: Q(s, a; θ)

The updates to θ can be derived from a variety of reinforcement learning algo-
rithms. In particular, in value-based methods, policy-based model-free methods
directly parameterize the policy π(a|s; θ) and update the parameters θ by per-
forming, typically approximate, gradient ascent on E[Rt].

An illustration of such a method is REINFORCE due to [1]. Standard RE-
INFORCE updates the policy parameters θ in the direction Rt∇θlog π(at|st; θ),
which is an unbiased estimate of ∇θE[Rt]. It is possible to reduce the vari-
ance of this estimate while keeping it unbiased by subtracting a learned function
of the state bt(st), known as a baseline [1], from the return. The resulting
gradient is ∇θ log π(at|st; θ) (Rt − bt(st)). This approach can be viewed as an
Actor Critic (AC) architecture where the policy π is the actor and the base-
line bt is the critic[14, 15]. The terms ∇θ log π(at|st; θ)Rt in REINFORCE and
∇θ log π(at|st; θ) (Rt − bt(st)) in AC method play a special role as is summarized
in the proposition below:

Proposition 4.0.1. Gradient descent in REINFORCE is computed by mini-
mizing a cross-entropy term:

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

723

J̃(θ) = lim
N→∞

1

N

N∑
i=1

T∑
t=1

Ri(τ) log πθ(ai,t | si,t) (1)

Likewise, in AC methods gradient descent minimizes a cross-entropy term:

J̃(θ) =

N∑
i=1

T∑
t=1

A(si,t, ai,t) log πθ(ai,t | si,t)

N
(2)

This sheds light on the connection between RL and SL. These connections
are summarized in table 1.

Term SL RL (REINFORCE) RL (A2C)

true label Y
expected future
rewards: R(τ)

expected advantage:
A(s, a) = Q(s, a)− V (s)

log term log(Ŷ)
log of policy:
log πθ(ai,t | si,t)

log of policy:
log πθ(ai,t | si,t)

cross-
entropy

N∑
i=1

Yi log Ŷi

N

Monte Carlo expectation:
N∑
i=1

T∑
t=1

Ri(τ) log πθ(ai,t|si,t)

N

Monte Carlo expectation:
N∑
i=1

T∑
t=1

A(si,t,ai,t) log πθ(ai,t|si,t)

N

Table 1: Comparing SL and RL for REINFORCE and AAC methods

5 Experiments

We will apply our remark to a very specific environment where actions do not
influence the environment. In this specific case, computing labels as the expected
reward entitles us to apply a typical SL method, namely gradient descent on
the cross-entropy term to solve a RL problem. The considered reinforcement
problem is a financial trading game concerning the Facebook stock (data were
retrieved from https://finance.yahoo.com/quote/FB from May 18, 2012 (date of
introduction of the stock to the stock market) to December 31, 2018. We denote
by (Pt)t=1,... the daily closing price of the Facebook stock in sequential order.
For each day, we compute the daily return as follows rt = Pt

Pt−1
− 1

The environment is composed of the last 10 daily returns. As returns are
continuous, our state space is Rn+, which is very large by RL standard. Each
day, our possible actions are threefold: do nothing, buy or sell the Facebook
stock. If we enter a new position at time t, this is materialized only the next
day. We will have an open position only at time t+ 1 initialized at the entering
price pt+1. Hence, if we only keep the position for one period, we will be facing
the return rt+2 as our position will be only closed at time t+ 2.

As for the reward, we take the Sharpe ratio of the trading strategy. To
compute our Mark to Market (the value of our trading strategy), we mark any
open position to last known price. We parametrize our policy with a deep
network with 2 fully connected ReLU nodes layers. We use ReLU activation

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

724

https://finance.yahoo.com/quote/FB

function (as opposed to sigmoid) for two main reasons: sparsity and less chance
to incur vanishing gradient. Recall a ReLU is defined as h = max(0, a) where
a = Wx + b. Vanishing gradient has less chance to vanish since the gradient is
either zero or constant whenever the linear term is strictly positive (a > 0). In
contrast, the gradient of sigmoid becomes increasingly small when the absolute
value of x tends to be large. This constant character of the ReLU’s gradient
results in faster learning. The other benefit of ReLUs is sparsity. Sparsity arises
when the linear term is non positive: a ≤ 0. The more units with non positive
terms exist in a layer, the more sparse the resulting representation. In contrast,
sigmoids always generate some non-zero value resulting in dense representations.

In this experience, we apply a typical SL method to solve this RL problem.
Namely, we do gradient descent on a cross-entropy term with the labels computed
as the expected reward. We compare various learning rates method with its value
ranging from 5%, 25%, and 50% or with an annealing learning rate that decreases
linearly from 0.5 to 0.1%. We do up to 250 iterations over a full episode consisting
of 1664 daily returns points. We compare the methods with a traditional policy
gradient method with an epsilon greedy exploration exploitation method where
the parameter of exploration ε is set to 0.25. We provide the average Sharpe ratio
of the various methods in figure 1. We see in the resulting experience that SL
method achieves a decent performance using gradient descent method compared
to the benchmark RL method. The best method is the one with an annealing
learning rate decreasing linearly from 0.5 to 0.1%. The intuition of this better
performance over other methods is that at first, it is important to have a high
learning rate to speed convergence but as we make more and more iterations,
it is better to use smaller learning to avoid oscillation in the gradient descent
method. It is however important to notice that this SL version of an RL problem
uses the fact that actions do not influence states. This is a particularity of our
experiment and somehow a limitation of this interpretation of a RL problem as
a SL problem.

Fig. 1: Various learning rate strategies for our ’SL packaged’ RL experiment.

We notice in figure 1 that the overall Sharpe ratio is above 3. This is very
high by financial market standards. This could be explained by the fact that

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

725

Facebook stock has been incredibly rising over the last five years. Hence the
algorithm has not much difficulty finding the optimal strategy that is to buy
and hold the stock.

6 Conclusion

We show in this article that there are tight connections between SL and RL.
PGMs in RL can be cast as cross-entropy minimization problems where true
labels are replaced by expected future rewards or advantages while the log
term is changed into the log policy term. This analogy takes its root from the
minimization problem where we are looking for the parameters that maximize
the expected future rewards or advantages. Should this optimization objective
changed, we conjecture that we could make other analogies between SL and RL.

References

[1] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning, volume 8. Springer, 1992.

[2] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In NIPS, pages
1057–1063, Cambridge, MA, USA, 1999. MIT Press.

[3] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In ICML, number 1 in Proceedings
of Machine Learning Research, pages 387–395, Bejing, China, 22-24 Jun 2014. PMLR.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. ArXiv e-prints, 2015.

[5] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control
Optim., 42(4):1143–1166, April 2003.

[6] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, March
2008.

[7] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lil-
licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In ICML, volume 48, pages 1928–1937, NY USA, 20-22 Jun
2016. PMLR.

[8] Alexander L. Strehl. Associative Reinforcement Learning, pages 49–51. Springer US,
Boston, MA, 2010.

[9] Matthias Rolf and Minoru Asada. Where do goals come from? a generic approach to
autonomous goal-system development. ArXiv, abs/1410.5557, 2014.

[10] S. Schaal. Learning from demonstration. In NIPS, MIT Press, pages 1040–1046. NIPS,
MIT Press, 1996.

[11] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In: AISTATS, JMLR.org, JMLR Proceedings,
15:627–635, 2011.

[12] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and
Audrunas Gruslys. Learning from demonstrations for real world reinforcement learning.
CoRR, abs/1704.03732, 2017.

[13] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge England, 1989.

[14] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[15] Thomas Degris, Patrick M. Pilarski, and Richard S. Sutton. Model-free reinforcement
learning with continuous action in practice. IEEE In ACC, 2012:2177–2182, 2012.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

726

	Introduction
	Related Work
	Supervised Learning
	Reinforcement Learning Background
	Experiments
	Conclusion

