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Abstract. We inspect the long-term learning ability of Long Short-
Term Memory language models (LSTM LMs) by evaluating a contextual
extension based on the Continuous Bag-of-Words (CBOW) model for both
sentence- and discourse-level LSTM LMs and by analyzing its performance.

We evaluate on text and speech. Sentence-level models using the long-
term contextual module perform comparably to vanilla discourse-level
LSTM LMs. On the other hand, the extension does not provide gains for
discourse-level models. These findings indicate that discourse-level LSTM
LMs already rely on contextual information to perform long-term learning.

1 Introduction

LMs usually estimate the probability of a word sequence w = (w1, ..., wT ) by
multiplying the conditional probabilities of each word given its preceding words.

Recurrent neural networks are often used for this purpose. Particularly, the
LSTM LM [1, 2] shown in Figure 1 has been the starting point of many successful
projects, as demonstrated by, e.g., Merity et al. [3].

This model approximates the probability of a word sequence w by sequen-
tially processing the words therein: each word wt is converted into an embedding
vector and fed to one or more LSTM layers. Next, the softmax function is applied
to obtain the conditional probability of the next word p(wt+1|w1, ..., wt).

LSTM LMs are not inherently limited in their ability of modeling word de-
pendencies: due to the feedback in the LSTM layers (through the feedback of
state vectors), these models can theoretically handle all long-distance relations.

wt

Embedding

...

LSTMs Softmax

wt+1

Fig. 1: LSTM LM

In practice however, the extent to which they can learn long-term dependen-
cies seems to be restricted. Khandelwal et al. [4] suggest that LSTM LMs are
able to remember only a limited amount of words preceding each input word.
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Also, Grave et al. [5] have shown that caches using a more remote word history
strongly improve the performance of LSTM LMs, supporting this hypothesis.

In this work, we take a novel approach to investigating the long-term learning
ability of LSTM LMs. We design a straightforward long-distance module, which
uses the context of each input word to obtain relevant semantic information. This
component is explicitly designed to be easily interpretable. We extend multiple
LSTM LM configurations with this long-term contextual component and analyze
performance disparities for both language modeling and speech recognition.

2 Long-term extension based on the CBOW model

The proposed long-term contextual extension to the LSTM LM is inspired by
the CBOW system [6]. This model learns to predict each target word wt based
on the words in its K-neighborhood {wt−K , ..., wt−1, wt+1, ..., wt+K} by learn-
ing continuous representations of these words and log-linearly combining them.
Mikolov et al. have shown that the learned embeddings show interesting linguis-
tic properties. For instance, in the resulting vector space, singular-plural and
male-female relationships are manifested through vectorial differences.

We try to exploit these useful properties to create a contextual feature vector
dt for predicting the word wt+1 by transforming the words in its K-history
{wt−K , ..., wt} into embeddings {et−K , ..., et} and combining them linearly:

dt =

∑K
k=0 g(k,wt−k) · et−k
∑K

k=0 g(k,wt−k)
(1)

In (1), g(k,wt−k) is the weight of wt−k in the combination. We propose three
weighting schemes. Firstly, uniform weighting with g(k,wt−k) = 1. Secondly,
position-dependent or exponential weighting with g(k,wt−k) = α−k. Here, α
determines how much the weights of the words decay as we go further back in
the history. Lastly, word-dependent weighting with g(k,wt−k) = IDF (wt−k),
which is the inverse document frequency weight of wt−k. In (1), this results
in each unique word being weighted by its term frequency-inverse document
frequency weight, a statistic reflecting the relative importance of the word [7].
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Embedding
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...
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wt+1

Fig. 2: LSTM LM with CBOW-based long-term extension

The feature vector dt is inserted into the LSTM LM by concatenating it with
the embedding of the current word wt before the LSTMs as shown in Figure 2.
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3 Experiments

3.1 Setup

We use TensorFlow [8] to train LSTM LMs with and without extensions on the
English WikiText-2 [9] and the Mediargus corpus, a Dutch in-house data set
consisting of newspaper fragments from the Flemish digital press database Me-
diargus. The former corpus contains 2M training tokens and uses a vocabulary of
33K words, with an out-of-vocabulary (OOV) rate of 2.6%. The latter contains
130M training tokens and employs a vocabulary of 50K words (4% OOV).

Preliminary experiments are performed to tune the hyperparameters of the
LSTM LMs. The resulting configurations are explained in the paragraphs below.

All LMs employ a single LSTM layer. The vanilla models use one embedding
layer, while the ones with extension use two of which the weights are not shared.

For Wikitext-2, we train small/large LSTM LMs with 100/280-dimensional
embeddings and 200/560 hidden neurons in the LSTM layer. In this case, the
models with contextual modules contain more parameters than the vanilla mod-
els. For the Mediargus corpus, we train small/large vanilla LSTM LMs with
64/256-dimensional embeddings and hidden sizes of 128/512. We also optimize
small/large models with long-term modules using 55/128-dimensional embed-
dings and hidden sizes of 100/512. In this case, the LSTM LMs with extensions
contain roughly the same amount of neural weights as the vanilla models.

All neural weights are uniformly and randomly initialized in the range of
[-0.05, 0.05], except for the word embeddings: they are either initialized as just
outlined or with pretrained embeddings obtained via Word2Vec [6].

The CBOW-based extension explained in Section 2 utilizes the 100 most
recent words to estimate the contextual feature vector, i.e., K is equal to 100
in (1). For position-dependent weighting, we choose α equal to 1.05. The IDF
weights used for word-dependent weighting are extracted via gensim [10].

We use stochastic gradient descent in conjunction with backpropagation
through time [11] to optimize the models. We apply gradient clipping [12] with
a maximum gradient L2 norm of 5. During training, we apply dropout [13, 14]
with a probability of 0.5 after the embedding and LSTM layers. The models use
an initial learning rate of 1. For the English Wikitext-2, we use 75 epochs, a
batch size of 20, 35 time steps for unrolling and apply exponential learning rate
decay with a rate of 0.8 starting from epoch 6. For the Dutch Mediargus corpus,
we use 3 epochs, a batch size of 50 and 50 time steps for unrolling.

The models are trained via either discourse-level training, where the hidden
states of the LSTMs are propagated over sentence boundaries, or sentence-level
training, where the hidden states are reset to zero after each sentence.

3.2 Qualitative experiments

We investigate whether the CBOW-based long-term module described in Sec-
tion 2 is meaningful by feeding short text pieces with clear topics to trained
LSTM LMs using the aforementioned extension and by analyzing their outputs.
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We search for the words of which the embedding vectors e are closest to the
computed feature vector d at the end of the text piece, expecting these words to
contain relevant long-term information, i.e., to be representative of the context.

A small sample of the results is shown in Table 1 for the large discourse-level
LMs with extensions trained on WikiText-2, using text snippets on very different
topics, namely Tropical Storm Josephine, planet Upsilon Andromedae b and the
military history of Australia, taken from the validation set of WikiText-2.

Weighting Snippet 1 Snippet 2 Snippet 3

depression molecules World
Uniform

Tropical helium England

storm planet States
Positional (exponential)

tropical core United

Tropical star conflicts
Word-dependent

depression magnetic Australian

Table 1: Qualitative evaluation

The words of which the embeddings are closest to the feature vectors are rep-
resentative of the context, even though many do not appear in the used snippets,
showing that the extension is capable of capturing long-term information.

3.3 Quantitative experiments

3.3.1 WikiText-2

For the LSTM LMs trained on WikiText-2, we evaluate the extension by mea-
suring the perplexity (PPL) the models produce on the test set of WikiText-2,
which contains 250K tokens. Scores are averaged over 3 training runs to ensure
the measurement variance is sufficiently small. The results are shown in Table 2.

Table 2 shows that for discourse-level LSTM LMs, the extension provides
only marginal improvements, suggesting that the contextual information cap-
tured by the CBOW-based module is already present in these models. However,
the test PPLs of sentence-level LSTM LMs are notably reduced: without con-
textual module, there is more than a 20% PPL difference between discourse- and
sentence-level models. With the extension, this discrepancy drops to 7% or less.

Extension Weighting PPL (discourse-level model/sentence-level model)

Random emb. init. Pretrained emb. init.

Small Large Small Large

No N/A 117.5/142.4 97.6/118.0 111.1/134.3 93.9/114.6

Uniform 115.8/125.8 97.4/105.1 108.7/117.7 93.1/99.8

Positional 114.4/128.6 97.1/109.5 107.8/121.4 93.1/104.9Yes

Word-dep. 118.7/127.2 97.7/107.5 109.3/118.9 92.8/100.7

Table 2: Quantitative evaluation on WikiText-2
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3.3.2 Mediargus corpus and Corpus Gesproken Nederlands (CGN)

For models trained on the Mediargus corpus, we measure PPLs on the test set
thereof (50K tokens). Also, we test the LMs in a speech recognition application.
We use the models to perform 100-best list rescoring on component k of CGN
[15], a Dutch speech data set containing news bulletins (41K tokens): we first use
the ESAT 2008 speech recognizer [16] to return 100 possible hypotheses for each
word list. These suggestions are then rescored by LSTM LMs with and without
long-term contextual extensions, and the resulting word error rates (WERs) are
measured. PPL and WER scores are averaged over 3 training runs to ensure the
measurement variance is adequately reduced. The results are shown in Table 3.

Model Weighting PPL/WER (%)

Random emb. init. Pretrained emb. init.

Small Large Small Large

Discourse-level

vanilla model
N/A 238.1/19.31 135.1/18.74 217.0/19.30 122.3/18.62

Sentence-level Uniform 222.5/19.31 132.3/18.76 213.3/19.26 122.2/18.61

model with Positional 223.0/19.39 133.1/18.78 215.8/19.27 126.5/18.72

extension Word-dep. 219.9/19.34 129.0/18.81 214.3/19.36 138.9/18.65

Table 3: Quantitative evaluation on the Mediargus corpus and CGN

Table 3 shows a similar trend to Table 2: in terms of both PPL and WER,
sentence-level models with CBOW-based module perform similarly to discourse-
level LMs without extension. For a more detailed analysis we refer to [17].

3.3.3 Discussion

Khandelwal et al. [4] have shown that (discourse-level) LSTM LMs grasp long-
term information via vague semantic concepts of a restricted word history.

The CBOW-based extension, which is essentially a semantic representation of
the context, does not improve discourse-level LSTM LMs. This result supports
the finding of Khandelwal et al. that discourse-level LSTM LMs are inherently
capable of learning long-term information up to a limited extent.

In addition, sentence-level LMs upgraded with the long-distance extension
perform similarly to plain discourse-level LSTM LMs, indicating that the long-
term semantic concepts learned by discourse-level LSTM LMs are even somewhat
comparable to the considered CBOW-based contextual representations.

4 Conclusion

We inspected the long-term learning ability of LSTM LMs by investigating a
long-term extension based on the CBOW model. We performed language mod-
eling and speech recognition experiments on English and Dutch data sets.
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The CBOW-based module lead to strong PPL reductions under sentence-
level training but not under discourse-level training. The sentence-level LMs
with extensions even performed comparably to vanilla discourse-level models.

The considered CBOW-based module apparently does not contain additional
useful long-term cues for discourse-level LSTM LMs because the contextual in-
formation it carries is already implicitly present in their recurrent hidden states.

The results in this work indicate that LSTM LMs are inherently capable of
learning basic semantic information of a limited history, i.e., the context. For
future research, easy wins might therefore be realized with modifications which
are not just semantic in nature. Additionally, it could be useful to investigate
extensions that can handle the more remote history. This is also evidenced by
the success of cache-based extensions: indeed, these extensions are not semantic
but memory-based, and they utilize very distant history word histories.
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[2] M. Sundermeyer, R. Schlüter, et al. LSTM Neural Networks for Language Modeling. In
INTERSPEECH, 2012.

[3] S. Merity, N. S. Keskar, et al. Regularizing and Optimizing LSTM Language Models.
arXiv preprint arXiv:1708.02182, 2017.

[4] U. Khandelwal, H. He, et al. Sharp Nearby, Fuzzy Far Away: How Neural Language
Models Use Context. In ACL, 2018.

[5] E. Grave, A. Joulin, et al. Improving Neural Language Models with a Continuous Cache.
In ICLR, 2017.

[6] T. Mikolov, K. Chen, et al. Efficient Estimation of Word Representations in Vector Space.
In ICLR, 2013.

[7] S. Robertson. Understanding Inverse Document Frequency: On theoretical arguments for
IDF. Journal of documentation, 60(5):503–520, 2004.

[8] M. Abadi, P. Barham, et al. Tensorflow: A System for Large-Scale Machine Learning. In
OSDI, 2016.

[9] S. Merity, C. Xiong, et al. Pointer Sentinel Mixture Models. arXiv preprint ar-
Xiv:1609.07843, 2016.
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