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Self-organizing maps in manifolds with complex
topologies: An application to the planning of
closed path for indoor UAYV patrols
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Abstract. In this paper, the ability of 1D-SOMs to address the Euclidian
Travelling Salesperson problem is extended to more irregular topologies,
in order to compute short closed paths covering an indoor environment. In
such environments, wall constraints makes the topology of the area to be
visited by a patroller very irregular. An application to indoor unmanned
aerial vehicule (UAV) security patrols is considered.

1 Introduction

Among the variety of vector quantization methods, the self-organizing feature
maps (SOM) introduced by Kohonen [1] has the core property of forcing the
space where the data lives to be projected onto an arbitrary topology, choosen
by the user. Indeed, the SOMs summarize the data as a graph of prototypes
linked by non-oriented edges. The number of vertices as well as the edges define
the arbitrary topology of the SOM. The self-organization is such that similar
prototypes are, as far as possible, neighbours on the graph. As the SOM topology
may not reflect the topology of the manifold containing the data, the way a SOM
finds a compromise between the actual topology of the data manifold and the
arbitrary topology of the graph is the real strength of this algorithm.

The vast majority of SOMs are made of grid-shaped graphs. This is very
convenient for large dataset visualization over the surface of a screen, as done for
documents in the WEBSOM approach [2]. However, the present paper rather
focuses on 1D SOMs where the graph edges connect the vertices as a loop.
The SOM organizes then the prototypes such as close prototypes are placed on
adjacent vertices in the loop. Visiting sequentially the prototypes in the loop
order leads to following a closed path in the input space. This has motivated
the use of 1D-SOM as an approximation of the Euclidian Travelling Salesperson
Problem (TSP) [3], even if a similar idea with elastic nets has been proposed
previously in [4]. In these approaches, the cities are points of a 2D Euclidian
space, and the travelling salesperson is allowed to move from any city to any other
in a straight line. In this context, adaptations of SOMs have been proposed,
including adjustments of the number of prototypes. A deeper introduction to
the problem as well as improvements of SOM for solving the Euclidian TSP can
be found in [5]. After convergence, the SOM loop approximates the shortest
tour that visits all the cities.

*This work is supported by the European Interreg Grande Région/Région Grand-Est
project GRONE.
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Aiming to visit all the cities justifies the SOM adjustments made in these
works. Nevertheless, when used in practical context, an approximation of the
tour, i.e. a closed path passing nearby all the cities rather than exatly at all
the cities, may be enough, as argued in [6]. Sticking to the classical SOM
formulation works in that case. In [6], “cities” are indeed loci of interest over the
sea. The tour is made by a patroller who navigates without a strict requirement
of passing accurately at each exact locus position. Let us stress that in this sea
navigation case, the Euclidian TSP assumption is fulfilled since no obstacles over
the see are considered, i.e. two loci can always be linked by a navigable straight
line. The same assumption as been made when applying this idea to umanned
aerial vehicules (UAVs) that need to patrol in a wide outdoor area [7], with a
supplementary Dubins constaint added to the path.
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Fig. 1: On the left, a 15 x 15 SOM that maps the 2D cactus distribution. The
gray dots are the input samples. On the center, the support graph G*"P with
1249 vertices and 2723 edges is plotted, for the sake of illustration of CHL.
On the right, exactly the same process as the one on the left is run, with a
SOM living in a graph-induced topology. The support graph actually used has
16737 vertices and 38334 edges. It is depicted in gray.

Our approach is motivated by similar applications, i.e. allowing a UAV to
patrol in order to visit all the places of a region. The difference is that the area to
visit is made of obstacles, as walls in an indoor environment. Our goal is then to
tackle this problem with 1D-SOM as well, even if we cannot rely on the Euclidian
property. Indeed, in an indoor environment, many straight lines between two
random loci cross at least one wall. To overcome this topographical constraint,
the present paper proposes to rewrite the SOM algorithm with a metric where
the distance between two loci is the length of the shortest path allowing to travel
from one locus to the other. Incoming section 2 presents an approximation of
geodesics in complex topological spaces, that is used in section 3 to rewrite the
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SOM algorithm. The application to UAV patrols with 1D SOMs in that context
is adressed in section 4.

2 Arbitrary topologies from graphs

Let X be an Euclidian space with a distance d. Let us consider the samples
£ € X as randomly chosen from a manifold M C &. The set M looks like
a Fuclidian space locally, but not at the global scale, sine it can have holes,
different dimensions, etc. Only manifolds with a single connected component
are considered here. The shortest path from one point in M to another one is a
geodesic. Computing geodesics is not easy, especially when the manifold is only
known through a finite set of samples taken from it. If the M is a surface and
X = R3, a triangularization of the surface can be computed so that geodesics,
crossing the triangles’ sides, can be approximated. Such algorithms have been
proposed in computer graphics [8]. In this case, the triangulation is a graph that
approximates the surface M. In more general manifolds and higher dimensions,
the Competitive Hebbian Learning (CHL) algorithm [9] allows to build such
a graph from samples, at least approximately. Once the vertices are samples
from M, CHL consist in sampling a lot of supplementary points in M and, for
each one, connect the two closest vertices, according to the Euclidian distance
in X. However, in as M may not be locally a surface, the graph may not be a
triangulation and interpolations used in [8] cannot be applied.

In this paper, we propose to approximate geodesics as follows. First, we set
up the vertices (s1,--+,sy) of a so called “support” graph denoted by G5"'P by
taking V' random samples from M. Then, we use CHL to add the edges of
GS"P. The cost of an edge [s1, 2] is d(s1,$2). Let us approximate the geodesic
between two points (£1,&2) € X? as a multiline. The first segment is [¢1, s¢, ],
where s¢ = argmin ¢ geu d (€, ), the last segment is [s¢,, {2] and the intermediate
segments are the edges of the shortest path from s¢, to s¢,, computed by A*. The
“graph-induced” distance d®"P (£1,&5) is defined as the length of that multiline.

Although such a geodesic and graph-induced metrics can be easily defined
for any manifold in any dimension, it is a rough approximation of the actual
geodesics of M. In the next section, we use it in a SOM algorithm in order to
see if the SOM properties are preserved.

3 Extension of the SOM updating rule

A SOM is a graph of prototypes, usually a grid. Let us denote a vertex by p and
the prototype hosted by this vertex w,. The SOM algorithm consists basically
in repeating the two following steps:

e Get a new sample {, and determine the vertex p* = argmin, d (£, wp).
o Vp, wy < (1 — Nwy, + A with A = ah (p, p*).

with « €]0,1[ and A (p,p*) a positive function such as h (p*,p*) = 1 and
h (p,p*) decreases as the distance on the SOM graph between positions p and p*
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increases. The decrease is low at the beginning, and it fastens as the algorithm
runs [1].

In addition to the SOM graph, another graph G®"P is involved here, such as
the distance used in the first step of the SOM algorithm racalled above is d*"P.
The second step consists of moving the prototype along the segment [wp, €], with
a fraction A of the segment’s length. Relying on G®"P, this step is replaced here
by moving along the approximated geodesic defined in section 2, with a fraction
A of its length as well.

Fig. 2: A 1D self-orgnizing map, in red, approximating a TSP in the first floor’s
corridors (the pink region) of our building, thanks to a graph-induced topology.
The SOM has 500 vertices. The support graph has 16406 vertices and 38419
edges. It is depicted in dark purple.

The comparison between the Euclidian and the graph-induced SOM proposed
here, on a distribution inspired by the cactus used in [1], shows that the SOM
is confined in the cactus manifold in our approach (see figure 1). This will be
exploited in the definition of indoor patrols in the next section.

4 Non Euclidian TSP with 1D-self-organizing maps

As mentioned previously, our application context consists of building up a closed
path in an indoor environment, for a security patrol made by a UAV. In this con-
text, the UAV is supposed to move quite slowly, so there are no real constraints
on the path curvature, as opposed to outdoor path planning [7] for faster UAV.
The path is thus only required to cover all the area, to be as short as possible,
and to form a close loop. In figure 2, the £ inputs are 2D points taken randomly
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in the corridors of the building. A support graph is built-up thanks to the CHL
algorithm and a 1D SOM of 500 vertices is applied, using the graph-induced
topology. The result is a closed path that actually covers all the corridor area.
The path follows the corridor cycles, as in regions A, B, E, F. The surround of
the area C is visited by 4 distinct portions of the path for each side, which is
better that cycling around C and then visit the rest of the area. This should
have been done at area D as well, where the result is sub-optimal there. In wider
areas, the path follows meanders, as at A and at the bottom of C, in order to
cover the area. The experiment shows that, in spite of few local sub-optimalities
(at D and B), the properties that 1D-SOMs exhibit in TSP approximations is
still preserved in more complex graph-induced topologies.

One critical part of the computation is the decay of the width of h, that
has to be wide at the beginning of learning and has to get narrow as the 1D
SOM learns. For the sake of computing efficiency, our h kernel is not a Gaussian
function as in usual SOMs, but rather a linearly decreasing ramp saturated to
zero (see equation 1).

h(p,p*):max(l—y(p/’)m,O),p>l (1)

where v (p, p*) is the number of edges in the closest path from p to p* in the
SOM graph. As it is a finite support function, only a part of the prototypes
are actually updated when a new sample is presented, expecially when h gets
narrow (i.e. p decreases). This saves a lot of computation time. Moreover, the
computation involves a huge amount of Dijkstra and A* algorithms executions on
quite a wide graph G®"P. This is kept tractable thanks to vq3 [10], an optimized
C++ implementation of vector quantification that we provide to the community.
Computational issued are not discussed further here.

5 Conclusion and perspectives

The first results presented in this paper show that approximating the topology
of the data samples by a support graph, obtained by a CHL process, allows for
applying SOMs with the real topology of the manifold where the data live. This
enables the use the “TSP effect” of 1D SOMs for path planning in structured
environments. The proposed method, thanks to CHL, is not specific to the
dimension of the input space. To illustrate this, figure 3 shows an extension to
3D spaces on an artificial distribution, even if the application addressed in this
paper is 2D. The result for indoor patrol path planning presented in figure 2 is
promising, but very sensitive to the decay of the winner-take-most kernel (h)
width. Let us stress that we have only applied a basic SOM algorithm, while
former TSP approaches use refinements to adjust the number of prototypes as
the SOM expands. Such refinements will be investigated for graph-induced 1D
SOMs in incoming work, in order to offer a ready-to-use planner for indoor
patrols, as the one by UAV that motivates our work.
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Fig. 3: A 1D self-orgnizing map in a 3D distribution. The 3D distribution is a
full 3D box on the left, a 2D rectangular surface on the right, both being linked
by two interlaced (but separate) spring shapes. The SOM (in thick black) has
500 vertices, the support graph has 10000 vertices and 30355 edges.
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