
Biochemical Pathway Robustness Prediction
with Graph Neural Networks

Marco Podda1, Davide Bacciu1, Alessio Micheli1, Paolo Milazzo1 ∗

1 University of Pisa - Department of Computer Science
Largo Bruno Pontecorvo 3, 56127, Pisa - Italy

Abstract. The robustness property of a biochemical pathway refers
to maintaining stable levels of molecular concentration against the per-
turbation of parameters governing the underlying chemical reactions. Its
computation requires an expensive integration in parameter space. We
present a novel application of Graph Neural Networks (GNN) to predict
robustness indicators on pathways represented as Petri nets, without the
need of performing costly simulations. Our assumption is that pathway
structure alone is sufficient to be effective in this task. We show experi-
mentally for the first time that this is indeed possible to a good extent,
and investigate how different architectural choices influence performances.

1 Introduction

Biological pathways describe the complex interactions between molecules at the
biochemical level. Pathways are usually represented as graphs, while Ordinary
Differential Equations (ODEs) are often used to investigate their dynamical
properties. Among them, robustness [1] is one of particular relevance. It can be
defined on a pair of input and output molecules, and it quantifies the stability of
the steady-state concentration of the output against perturbations in the initial
concentration of the input (α-robustness, [2]). To assess robustness, the graph
representation of the pathway must be translated into a set of ODEs. Then,
the property is calculated via integration in parameter space, which requires a
massive amount of computational resources. We present a novel and challenging
application of Graph Neural Networks (GNNs) [3, 4] in the field of computational
biology. Specifically, we introduce the use of GNNs for pathway robustness pre-
diction. The assumption underlying this study is that the structure of a pathway
contains sufficient information to predict robustness indicators without having
to perform expensive numerical simulations. To test this assumption, we apply
GNNs to a dataset of pathways graphically represented as Petri nets [5]. We
perform an extensive evaluation of six GNN variants on the task, studying how
the number of layers affects performances. Our experiments show that GNNs
are indeed capable of predicting robustness to a good extent. These preliminary
results can ultimately lead to faster advances in the field: in particular, this
approach could relieve researchers from the need of performing expensive simu-
lations in order to evaluate not only robustness, but also dynamical properties
such as bistability, monotonicity and oscillations.

∗This work has been partially supported by the Italian Ministry of Education, University,
and Research (MIUR) under project SIR 2014 LIST-IT (grant n. RBSI14STDE).

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

121

A
/−−→ B

B
/C−−−→ A

C + D
B/−−−→ 2E + F

(a)

dA
dt = −k1A + k2

B
C

dB
dt = k1A− k2

B
C

dC
dt = −k3CDB
dD
dt = −k3CDB
dE
dt = 2k3CDB
dF
dt = k3CDB

(b) (c) (d)

Fig. 1: a) A set of chemical reactions in arrow notation, with promot-
ers/inhibitors above the arrows. b) The associated ODE system (example). c)
The Pathway Petri net corresponding to the chemical reactions. d) An example
of training graph: circle nodes are molecules, box nodes are reactions. Different
edge styles identify the three possible relations (standard, promoter, inhibitor).

2 Background and Notation

A chemical reaction is a process that transforms a group of molecules (reactants)
into another (products). Reactions are governed by kinetic constants, that spec-
ify the rate at which the reaction can occur, given the concentrations of the
reactants in a chemical solution. In reactions, molecules can also play the roles
promoters (reaction facilitators) or inhibitors (reaction blockers). A biochemical
pathway is a system of related chemical reactions, where the product of one may
become the reactant of another. Petri nets are a common modeling notation
for pathways. We consider here a variant of Petri nets that suitably considers
promoters and inhibitors, that we call Pathway Petri nets (PPNs). The seman-
tics of a PPN is described by an ODE system that models the associated set of
reactions. The state of a PPN (called marking) corresponds to an assignment of
positive real values to the variables associated to the system. Given M , the set
of possible markings, a PPN is defined as a tuple P = (P, T, f, p, h, δ,m0) where:

• P and T are finite, non empty, disjoint sets of places and transitions;

• f : ((P ×T)∪ (T ×P))→ N≥0 defines the set of directed arcs, weighted by
non-negative integers (whose value corresponds to the multiplicity of the
reactants/products in the reaction);

• p, h ⊆ (P × T) are the sets of promotion and inhibition arcs;

• δ : T → Ψ, with Ψ = M → R≥0, is a function that assigns to each
transition a function corresponding to the computation of a kinetic formula
to every possible marking m ∈M ;

• m0 ∈M is the initial marking.

Given a PPN P, we can cast it into a graph GP = 〈V,E〉 as follows. First
we define the node sets Vmol for molecules, and Vreact for reactions, and set

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

122

Vmol = P , Vreact = T . We then define three edge sets: Estd for standard edges,
Epro for promoting edges, and Einh for inhibition edges; and set Estd = {〈u, v〉 ∈
(P × T) ∪ (T × P) | f(〈u, v〉) > 0}, Epro = p, Einh = h. Finally, we impose
V = Vmol ∪ Vreact and E = Estd ∪ Epro ∪ Einh

1. Note that information about
kinetic formulae, reactant multiplicities, the transition function δ, and the initial
marking m0 are not included in the graph. This corresponds to leveraging only
the topology of the pathway, discarding all information related to the mechanics
of the reactions. Figure 1 shows a set of reactions modeled as a PPN and the
corresponding graph. Given a graph GP let us define its augmented version
ḠP = 〈V̄ , Ē〉 as follows: V̄ = V , and Ē = Ēstd ∪ Epro ∪ Einh, with Ēstd =
Estd ∪{〈v, u〉 | 〈u, v〉 ∈ Estd, u ∈ Vmol, v ∈ Vreact}. Informally, for each standard
edge in E connecting a molecule to a reaction, we add to Ē the same edge with
reversed direction. This encodes the notion that changing reaction rates directly
influences the consumption of the reactant. Intuitively, this graph represents
influence relations, rather than reaction dynamics. Furthermore, given a graph
GP and a pair of nodes u, v ∈ Vmol, let us define Xuv

GP
, the subgraph of GP

induced by (u,v), informally as follows: Xuv
GP

is the smallest subgraph of GP
whose node set contains u, v, as well as nodes in every possible oriented path
from u to v in ḠP . Note that, although its node set is computed using ḠP , Xuv

GP
is a subgraph of GP . Finally, let us define the neighborhood function of GP as
N (u) = {v ∈ V | 〈u, v〉 ∈ E}.

3 Task

We start from a set of graphs G = {GP1
, GP2

, . . . , GPN
} with N = 706, repre-

senting PPNs taken from the BioModels [6] database2 (we will hereafter drop
the dependency on P for ease of notation). Each graph Gi is associated with
a set of tuples TGi = {(u, v, r) | u, v ∈ Vmol}. Our targets r ∈ [0, 1] ⊆ R
are the robustness values3 associated to the pair of input/output nodes (u, v),
where 1 is the maximum robustness possible. We frame the problem as a clas-
sification task, transforming these values into indicators y = I(r) by rounding
them to the nearest integer. We then extract, for each graph, the set of its
induced subgraphs XGi

= {(Xuv
Gi
, y) | (u, v, r) ∈ TGi

, y = I(r)}. Our dataset is
thus defined as D =

⋃
Gi∈G{XGi}. In this work, induced subgraphs with num-

ber of nodes < 40 are used, which allows us to work with a set of graphs of
homogeneous size. The resulting dataset is made of 7013 induced subgraphs.
With this newly defined dataset, the learning problem we face is to find a model
f(XG) which, given an unseen induced subgraph, predicts the associated ro-
bustness indicator with “good” accuracy. In other words, we wish to minimize
L(D) = 1/|D| ·

∑
(XG,y)∈D ε1 log(ŷ) + (1 − y) log(1 − ŷ), with ŷ = f(XG), that

is, the weighted binary cross-entropy between the predicted output of the model

1Note that Vmol ∩ Vreact = ∅ and Estd ∩ Epro ∩ Einh = ∅.
2Specifically, all the manually-curated models in the BioModels database at the time we

performed our experiments.
3Pre-computed as a normalized relative variant of α-robustness [2] from results of numerical

simulations performed using the libRoadRunner Python library [7].

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

123

ŷ and the actual indicator y. Weighting with ε1 = #negative examples
#positive examples is needed to

mitigate the imbalance in favor of the positive class (72%-28%).

4 Model

Our model uses GNNs to embed the structure of subgraphs XG. GNNs are based
on the notion of state, a vector associated to each node in the graph which is
updated iteratively according to a message-passing schema [8]. The initial state
is set to be a vector of features: in our case, each subgraph node contains a
binary feature vector of size 3, where the first position encodes node type (0 for
molecule, 1 for reaction); the second position encodes whether a node is an input
node (1) or not (0); the third position encodes whether a node is a output node
(1) or not (0). In general, the `-th layer of a GNN updates the state of a node
v as h`+1

v = σ(w` U(h`
v, C({h`+1

u | u ∈ N (v)})), where C is a function that
aggregates nodes in the neighborhood of the current node; U is an update func-
tion that combines hv, the current state of the node with the aggregated state
of its neighbors; w` are adaptive weights; and σ is a nonlinearity (ReLU in our
case). To build a graph-level representation at layer `, node representations are
aggregated by a permutation-invariant readout function h` = R({h`

v | v ∈ V }).
Note that different GNNs can be derived choosing different C, U , and R. The
final representation of the graph is obtained concatenating the representations of
each layer; more formally, hG = [h1;h2; . . . ;hL], where ; denotes concatenation,
and L is the number of GNN layers. We denote the process of obtaining the
final graph representation as hG = GNN(XG). The graph representation is then
fed to a Multi-Layer Perceptron (MLP) classifier with two hidden layers with
ReLU activations, and sigmoid outputs that compute the robustness probability
associated to the input subgraph. Summing up, our model f is implemented as
the following neural network: f(XG) = MLP(GNN(XG)), where we omit the
parameterization for ease of notation.

5 Experiments

We thoroughly assess the performance of the model described in Section 4 using
nested Cross-Validation (CV) [9] for generalization accuracy estimation, with an
outer 5-fold CV for performance assessment and an internal holdout split (90%
training, 10% validation) for model selection. The model is selected with grid
search on the following hyper-parameters: size of the GNN embedding (choosing
between 64 and 128 per layer), number of GNN layers (choosing from {1, . . . , 8}),
and type of readout function (choosing among element-wise mean, max or sum).
We evaluate 6 different models, determined by the type of convolution adopted
and whether or not edge features are learned. Specifically, we evaluate three
different convolutions: Graph Convolutional Network (GCN) [10], Graph Iso-
morphism Network (GIN) [11] and Weisfeiler-Lehman GCN (WLGCN) [12]. For
each of them, we evaluate a vanilla variant which uses the state update function
described in Section 4, as well as an edge-aware variant (following [13]) where

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

124

each edge type has its own set of adaptive weights. Formally, the edge-aware vari-
ants update the state as h`+1

v = σ(
∑

k∈K w`
k U(h`

v, C({h`+1
u | u ∈ N (v, k)})),

where k ranges over all K possible edge types, and N (v, k) is a neighborhood
function that only selects neighbors of v connected by an edge of type k. All
models are trained with the Adam optimizer, using a learning rate of 0.001 and
scheduled annealing with a shrinking factor of 0.6 every 50 epochs. The size
of the two hidden layers of the MLP is 128 and 64, with dropout rate of 0.1.
All models are trained for a total of 500 epochs; we use early stopping on the
validation accuracy with 100 epochs of patience. In the assessment phase, the
model is trained three different times to account for random initialization effects;
the resulting accuracies are averaged to obtain the final test fold accuracy. The
experiments are implemented using the PyTorch Geometrics library [14].

6 Results and Discussion

Model Test accuracy

Baseline 0.7322± 0.0000

GCN-vanilla 0.8573± 0.0087
GIN-vanilla 0.8567± 0.0137
WLGCN-vanilla 0.8624± 0.0088

GCN 0.8692± 0.0140
GIN 0.8684± 0.0078
WLGCN 0.8687± 0.0117

0.77

0.80

0.82

0.85

0.88
GCN-vanilla GIN-vanilla WLGCN-vanilla

1 2 3 4 5 6 7 8

0.82

0.84

0.85

0.87

0.89

GCN

1 2 3 4 5 6 7 8

GIN

1 2 3 4 5 6 7 8

WLGCN

Number of layers

Va
lid

at
ion

 A
cc

ur
ac

y

Fig. 2: Left: evaluation results. Right: plot of the change in validation accuracy
as a function of the number of GNN layers.

Figure 2 (left) shows the results of the assessed models, corresponding to the
mean and standard deviation of the accuracy obtained in the 5 evaluation folds.
To double-check the significance of our results, we also report the results of
a baseline that simply predicts the most frequent class in the dataset. From
the analysis, three results emerge: a) the convolution type does not seem to
be a relevant factor for good performances: in fact, all models perform very
similarly despite using different types of graph convolutions; b) as expected,
learning edge features provides a slight increase in performances: in fact, all
variants that leverage edge features obtain an improvement, up to approximately
1.2% in the case of the GCN-based model; c) all examined GNNs significantly
outperform the baseline. This demonstrates the validity of our assumption, i.e.
the structure of the pathway contains enough information to predict robustness
to some extent, and GNNs are effective at extracting such information. The
fact that the accuracy plateaus can be related to the influence of the reaction
parameters (which we do not consider). As an additional contribution, we study

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

125

how GNN layering affects performances. To do so, we perform an ablation study
where we stratify the results of the model selection by number of GNN layers,
and report the mean and standard deviations of the related validation accuracies.
Note that, although validation accuracy is in general an over-estimate of the true
accuracy, the relative difference in performance as the number of layers change
stays proportional independently of the data used. Figure 2 (right) shows that,
for all considered GNNs, increasing the number of layers improves accuracy, up
to a certain depth where it becomes stable. This provides evidence that “deep”
GNNs are necessary to obtain good performances in this task.

7 Conclusions

In this work we have shown, for the first time, that GNNs can be effective at
predicting the dynamical property of robustness of pathway networks, leveraging
only their structure. Future works will be aimed to extend this result to larger
graphs as well as to other interesting dynamical properties.

References

[1] H. Kitano. Biological robustness. Nature Reviews Genetics, 5(11):826, 2004.

[2] L. Nasti, R. Gori, and P. Milazzo. Formalizing a notion of concentration robustness
for biochemical networks. In STAF Workshops, volume 11176 of LNCS, pages 81–97.
Springer, 2018.

[3] F. Scarselli, M. Gori, et al. The Graph Neural Network Model. Trans. Neur. Netw.,
20(1):61–80, 2009.

[4] A. Micheli. Neural Network for Graphs: A Contextual Constructive Approach. Trans.
Neur. Netw., 20(3):498–511, 2009.

[5] V. N. Reddy, M. L. Mavrovouniotis, et al. Petri net representations in metabolic pathways.
In ISMB, volume 93, pages 328–336, 1993.

[6] C. Li, M. Donizelli, et al. BioModels Database: An enhanced, curated and annotated
resource for published quantitative kinetic models. BMC Systems Biology, 4:92, 2010.

[7] E. T. Somogyi, J. M. Bouteiller, et al. libRoadRunner: a high performance SBML simu-
lation and analysis library. Bioinformatics, 31(20):3315–3321, 2015.

[8] J. Gilmer, S. S. Schoenholz, et al. Neural message passing for quantum chemistry. In
International Conference on Machine Learning, 2017.

[9] S. Varma and R. Simon. Bias in Error Estimation When Using Cross-Validation for Model
Selection. BMC bioinformatics, 7:91, 2006.

[10] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, 2017.

[11] K. Xu, W. Hu, et al. How Powerful are Graph Neural Networks? In International
Conference on Learning Representations, 2019.

[12] C. Morris, M. Ritzert, et al. Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. In Proceedings of the 33rd Conference on Artificial Intelligence, AAAI
’19, pages 4602–4609, 2019.

[13] M. S. Schlichtkrull, T. N. Kipf, et al. Modeling Relational Data with Graph Convolutional
Networks. In Proceedings of the 15th International Conference on The Semantic Web,
ESWC ’18, pages 593–607, 2018.

[14] M. Fey and J. E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

126

