
Comparison of Cluster Validity Indices and
Decision Rules for Different Degrees of

Cluster Separation
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Abstract. Clustering algorithms are powerful tools for data exploration
but often require the a priori choice of the number of clusters. In practice,
cluster validity indices (CVIs) are used to quantify the clustering structure
of candidate partitions, then decision rules are applied to the indices to
choose the best number of clusters. This study analyzes how dimension-
ality and the degree of cluster separation impact the choice of the number
of clusters according to 7 different indices and various decision rules. In
contrast to previous studies, the degree of cluster separation is controlled
by a single parameter and several decision rules are tested for each CVI.

1 Introduction

Clustering algorithms partition data points into groups, where similar points are
placed in the same group and dissimilar points are placed in different groups.
The vast majority of unsupervised clustering algorithms require the a priori
choice of the number of clusters, denoted here as the parameter K.

The parameter K can be chosen using cluster validity indices (CVIs). CVIs
measure the quality of partitions for different K values, often by quantifying
cluster compactness and separation. Then, the number of clusters that enables
the best partitioning of the data is chosen using a given decision rule. For
example, the selected value K̂ may be the K with the maximum CVI value.

The performance of various CVIs has previously been compared in the lit-
erature. The first comprehensive comparison was conducted by [1], where the
Calinski-Harabasz index [2] had the best performance in a Monte Carlo evalua-
tion of 30 indices. This study also introduced the idea that various decision rules
could be applied to the same index. The datasets used by the authors had low
dimensionality and consisted of distinct, non-overlapping clusters. Chiang and
Mirkin [3] compared 9 different indices in a variety of conditions. Their experi-
mental design included, among other factors, varying cluster shapes and cluster
overlap. Hartigan’s rule [4] achieved the best score in recovering the number of
clusters. In a recent study by [5], 30 indices were compared using 6480 differ-
ent configurations. Cluster separation was introduced in the analysis by varying
cluster density and the distance between cluster centroids. The Silhouette width
[6] performed the best overall and in the case of strong cluster overlap.
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Although several comparison studies have been conducted in the past, most
have focused on the case of distinctly separate clusters. However, in real datasets,
groups are not always well separated. Studies that have included cluster separa-
tion as a factor controlled it using two parameters: distances between centroids
and cluster density. Unfortunately, it is difficult to choose an appropriate combi-
nation of these two parameters, as different pairs of cluster densities and centroid
distances can result in the same degree of cluster overlap. Most previous compar-
ison studies have also ignored the potential of different decision rules to improve
the selection of the parameter K.

The objective of this study is to evaluate the impact of cluster separation
and high dimensionality on the estimation of partition quality, as well as the
impact of the chosen decision rule on the quality of the chosen partition. The
J separation index introduced in [7] is used to control cluster separation in the
simulated data using a single parameter, enabling more precise control of the
degree of cluster separation. In addition, two decision rules are assessed for
each index evaluated: the original rule and an alternative. Thus, this study
reexamines the question of decision rule choice and demonstrates its importance
with respect to partition quality.

Section 2 presents the indices evaluated in this study, Section 3 describes the
study protocol and Section 4 presents the main results and concludes the paper.

2 Cluster Validity Indices and Decision Rules

The CVIs studied here (shown in Table 1) were chosen based on their perfor-
mance in previous comparison studies. All of these CVI functions I(K) involve
the calculation of some measure of compactness for each cluster k. We can divide
these CVIs into two groups: global indices, which only use the points belonging
to cluster k to calculate its compactness, and local indices, which also consider
points belonging to the nearest neighboring cluster.

One example of a local method is the Silhouette width (Sil) [6], which mea-
sures partition quality by examining whether points assigned to a specific cluster
should not be assigned to its nearest neighbor instead. The recently introduced
VCN index (VCN) [8] is a variant of Sil that strives to reduce its computational
time. The Davies Bouldin index (DB) and its variation (DB*) [9, 10] also follow
a local approach and include measures of cluster compactness and separation.

An emblematic example of a global method is the Calinski-Harabasz index
(CH) [2]. It maximizes the ratio of the between-cluster sum of squared distances
to the within-cluster sum of squared distances. Another example of a global
method is Hartigan’s rule (Hart) [4], which evaluates the marginal gain in cluster
compactness when the number of clusters is increased. The Gap statistic (Gap)
[11] compares cluster compactness for a given partition to the average cluster
compactness of the partitions estimated for B random reference distributions.

The original decision rules proposed for choosing K̂ (see Table 1) may not
always favor the partition that is most similar to the true partition. This idea
is tested in the following sections (Sections 3 and 4).
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Index Type I(K) Formula Original decision rule

CH [2] global n−K
K−1

Inter(K)
Intra(K) K̂ = arg maxK I(K)

DB [9] local 1
K

∑K
k=1 maxC`∈C\Ck

S(C`)+S(Ck)
d(c̄`,c̄k)

K̂ = arg minK I(K)

DB* [10] local 1
K

∑K
k=1

maxC`∈C\Ck
S(C`)+S(Ck)

minC`∈C\Ck
d(c̄`,c̄k)

K̂ = arg minK I(K)

Gap [11] global (1/B)
∑B
b=1 log(W ∗K(b))− log(WK)

K̂ = minK s.t.

I(K + 1)− I(K) ≤ sK+1

Hart [4] global

(
Intra(K)

Intra(K+1) − 1

)
(n−K − 1)

K̂ = minK s.t.

I(K) ≤ 10

Sil [6] local
∑K
k=1

∑
i∈Ck

b(i)−a(i)
max{a(i),b(i)} K̂ = arg maxK I(K)

VCN [8] local
∑K
k=1

bd(Ck)−S(Ck)
max{bd(Ck),S(Ck)} K̂ = arg maxK I(K)

Table 1: Cluster Validity Indices. C is a partition of K clusters, Ck is the
k-th cluster in C, c̄k is the centroid of cluster k, xi is observation i, x̄ is the
average of all n observations and d() is the Euclidean distance. Inter(K) is

the inter-cluster variation, given by
∑K
k=1 |Ck|d

2(c̄k, x̄), Intra(K) is the intra-

cluster variation, given by
∑K
k=1

∑
i∈Ck

d2(xi, c̄k), S(Ck) is the spread of clus-

ter k, given by 1
|Ck|

∑
i∈Ck

d(xi, c̄k), Dk is the sum of squared pairwise dis-

tances in cluster k, given by
∑
j 6=i|i,j∈Ck

d2(xi,xj), WK =
∑K
k=1

1
2|Ck|Dk,

a(i) = 1
|Ck|

∑
j 6=i|i,j∈Ck

d(xi,xj), b(i) = minC`∈C\Ck

1
|C`|

∑
j∈C`

d(xi,xj) and

bd(Ck) = minC`∈C\Ck

1
|Ck|

∑
i∈Ck

d(xi, c̄`). For the Gap statistic, B is the num-

ber of random datasets, W ∗K(b) is the value of WK for the b-th random dataset
and sK+1 is the standard deviation of

[
log(W ∗K+1(1)), ..., log(W ∗K+1(B))

]
.

3 Experimental Protocol

The goals of the following numerical experiments are twofold: (i) to compare
the performance of existing CVIs under various simulation conditions, including
varying data dimensionality and degrees of cluster separation, and (ii) to assess
the impact of decision rule choice on the quality of the chosen partition.

The performance of CVIs is analyzed using simulated data with Gaussian
clusters. Each true cluster contains 30 observations, and n is fixed to K × 30.
Five simulation parameters are varied (see Table 2). The J separation index
introduced in [7] is used to control the degree of separation between clusters.
Cluster shape is controlled by fixing the ratio (rλ) of the smallest to the largest
eigenvalue of the variance-covariance matrix for each cluster, where a ratio of 1
corresponds to a spherical cluster and a ratio of 10 corresponds to an elongated
cluster. Diagonal variance-covariance matrices are used to generate spherical
clusters, whereas elongated clusters are generated using block-diagonal matrices.

This experimental design leads to 3×2×2×2 = 24 configurations. Ten ran-
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dom datasets are sampled for each configuration and two clustering algorithms
(Ward’s hierarchical clustering and K-means initialized with K-means++) are
applied to each dataset, yielding a total of 480 total partitions per number K of
clusters tested. Following a common practice in the literature, the values of K
evaluated here are all integers in the range [2,

√
n].

The seven CVIs from Section 2 are applied to these partitions, and the es-
timated number of clusters K̂ is found using the original decision rule (“Orig”)
and an alternative decision rule. For the “MaxDec” decision rule,

K̂ = arg max
K

I(K − 1)− I(K), (1)

and for the “MaxInc” decision rule,

K̂ = arg max
K

I(K)− I(K − 1). (2)

Following the methodology in [12], each K̂ is compared to the K resulting
in the partition most similar to the true partition. The Adjusted Rand Index
(ARI) [13] was chosen to evaluate the similarity between true and estimated
partitions. According to [14], the ARI is a good choice for true partitions with
large, equal-sized clusters. The criterion used to evaluate the quality of K̂ is

|K̂ −KARI |, (3)

where KARI is the K with the highest ARI. This criterion should be minimized.
For each CVI and decision rule pair, partition choice is also assessed for the case
where the true partition is included as a candidate partition, as was done in [15].

Parameter Value

Cluster separation (J)
close (J = 0.01), separated (J = 0.210),

well separated (J = 0.342)

Cluster shape spherical (rλ = 1), elongated (rλ = 10)

Number of clusters (Ktrue) 4, 8

Dimensionality (# of dimensions / n) low dim (0.5), high dim (1.5)

Clustering algorithm K-means, Ward’s hierarchical clustering

Table 2: Experimental design

4 Results and Conclusions

Table 3 shows the average results for the criterion in Eq. (3). In each column,
all methods are compared to the best method using a paired t-test, and the best
method is highlighted in bold text in a shaded cell, as well as all methods that
are not significantly different from it.

Overall, the best methods for the high-dimensional case are DB∗ MaxDec,
DB MaxDec, Hart MaxDec and Sil MaxInc. In this setting, the only methods
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with competitive performance for all cluster separation levels are DB∗ MaxDec
for K-means partitions and Hart MaxDec for Ward partitions. For low-dimensional
data with low cluster separation, the best method is DB orig (except for Ward
partitions, where DB MaxDec and DB∗ MaxDec perform best). When the true
partition is a candidate, Hart MaxDec chooses it the most often (for 63.3% of
all datasets), followed by Gap MaxInc (48.3%) and Sil MaxInc (41.9%).

Method 1. Low dim, spherical 2. Low dim, elongated 3. High dim, spherical 4. High dim, elongated

CH MaxInc 5.1 3.4 5.4 5.8 7.8 3.0 8.7 1.1 5.0 5.6 10.2 1.2

CH Orig 13.2 3.6 9.2 13.6 2.2 1.4 3.0 1.6 2.5 1.6 2.0 1.6

DB MaxDec 12.5 3.6 8.2 12.3 0.8 0.8 1.6 0.7 1.7 0.6 0.6 0.6

DB Orig 0.2 7.8 3.6 0.4 11.9 9.9 10.9 6.3 8.2 8.7 11.9 6.4

DB∗ MaxDec 11.6 3.5 6.5 9.9 1.4 1.8 1.6 0.8 1.7 0.6 0.6 0.8

DB∗ Orig 2.0 6.4 2.8 1.8 9.5 8.3 10.9 6.0 7.8 8.1 11.9 5.5

Gap MaxInc 9.0 2.2 5.6 9.3 3.5 1.4 4.2 1.4 1.4 1.2 4.8 1.3

Gap Orig 12.6 1.8 8.0 11.9 1.3 2.1 2.7 1.6 1.7 0.8 1.7 1.6

Hart MaxDec 10.1 2.3 7.0 11.3 2.3 2.0 2.0 2.0 1.9 1.8 1.8 2.0

Hart Orig 14.0 4.8 10.0 14.0 2.0 1.6 3.0 1.5 3.0 2.0 2.0 1.5

Sil MaxInc 7.9 2.0 4.9 8.8 4.0 2.0 3.9 1.1 1.2 1.4 5.0 1.3

Sil Orig 12.9 5.3 8.9 12.8 2.0 4.8 6.6 2.1 3.0 2.3 6.8 2.0

VCN MaxInc 5.5 2.7 5.1 7.8 6.1 2.6 5.0 2.3 2.7 2.5 6.4 2.1

VCN Orig 13.7 3.9 9.0 12.8 1.8 2.2 2.7 2.9 3.3 3.1 2.2 3.5

Method 5. Low dim, Kmeans 6. Low dim, Ward 7. High dim, Kmeans 8. High dim, Ward 9. Overall

CH MaxInc 2.2 5.7 4.6 3.9 9.7 10.2 7.1 5.7 3.0 5.9 5.5 5.8 6.7 5.5 3.7

CH Orig 13.9 4.6 9.4 1.8 12.4 11.2 2.8 1.8 2.4 5.7 3.3 6.7 2.8 1.8 2.3

DB MaxDec 12.6 3.5 8.6 0.8 12.7 10.9 1.8 0.8 1.6 4.2 2.1 6.2 1.5 0.8 1.6

DB Orig 0.4 7.9 3.7 11.9 0.2 1.3 9.5 9.0 6.8 7.1 7.9 5.4 10.1 10.1 8.5

DB∗ MaxDec 9.4 3.6 6.1 0.7 12.3 10.4 1.8 1.0 1.8 4.2 2.1 6.2 1.9 1.2 2.0

DB∗ Orig 2.2 6.0 3.0 10.4 2.1 2.4 8.9 8.7 6.0 7.1 7.9 5.3 9.1 9.1 7.3

Gap MaxInc 9.2 2.4 6.3 3.1 9.4 9.1 2.5 2.9 1.2 3.2 2.9 4.9 2.7 2.8 1.6

Gap Orig 12.0 2.6 6.9 1.3 11.3 10.2 2.2 1.6 1.7 5.1 2.8 5.5 1.9 1.7 1.6

Hart MaxDec 10.7 3.1 6.8 1.6 10.9 9.2 2.1 2.3 2.0 3.4 2.0 4.3 2.1 2.0 2.0

Hart Orig 14.0 4.8 9.8 2.0 14.0 12.8 3.0 1.8 2.7 6.0 3.8 7.8 3.0 1.8 2.8

Sil MaxInc 7.0 2.9 4.9 2.4 10.2 9.3 3.0 3.1 1.3 3.0 2.8 5.1 2.9 3.0 2.0

Sil Orig 13.1 4.9 8.6 2.6 12.2 9.2 4.7 5.0 2.0 4.5 4.0 4.5 3.8 3.7 3.2

VCN MaxInc 5.3 3.8 5.0 4.2 9.2 8.4 4.7 4.2 2.4 3.4 3.6 4.4 4.2 4.3 2.8

VCN Orig 13.6 4.4 8.9 1.9 13.2 11.5 3.5 2.9 3.6 4.8 3.1 5.2 2.8 2.2 2.9

Table 3: Average results for |K̂ − KARI |. For each numbered column (1-9),
the three inner columns represent close, separated and well separated clusters.
Within each inner column, results that are not significantly different from the
best results are in bold and highlighted in gray. Results in numbered columns
1-4 are an aggregation over all algorithms and values of Ktrue, and results for
5-8 are an aggregation over all cluster shapes and values of Ktrue.

For all indices studied, using an alternative decision rule (“MaxInc” or
“MaxDec”) generally improves performance compared to the original rule, sug-
gesting that these alternatives are more robust to a variety of data character-
istics. These results demonstrate that the choice of decision rule can greatly
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impact the quality of the chosen partition, which opens the door to further re-
search on the development of new decision rules, as well as CVI and decision
rule pairings. Future works could also explore how other factors, such as the
presence of sub-clusters or non-uniform cluster sizes, impact partition choice.
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