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Abstract. Modern high-throughput technologies deployed in R&D for
new health products have opened the door to Machine Learning appli-
cations that allow the automation of tasks and support for data-driven
risk-based decision making. Appealing opportunities of applying Ma-
chine Learning appear for the development of modern complex drugs,
for biomanufacturing production lines optimization, or even for elaborat-
ing product portfolio strategies. Nevertheless, many practical challenges
make it difficult to apply Machine Learning models in the biopharmaceuti-
cal field. Innovative approaches must thus be considered in many of these
practical cases. This tutorial paper is an attempt to describe the landscape
of Machine Learning application to the biopharmaceutical industry along
three dimensions: opportunities, specificities or constraints and methods.

1 Introduction

Machine learning in the health and pharmaceutical areas have attracted a great
deal of attention over recent years (see e.g. [1] for a deeper review), including
much publicised work from some of the major players in the area, such as Google
DeepMind’s work on the protein folding problem [2]. The aim of this short
tutorial is to take a step back from the high profile, headline grabbing work to
assess the opportunities and difficulties for machine learning in pharmaceutical
industry. Traditional pharmaceutical products mostly involve small chemical
molecules (e.g. pain killers), bio-technologies involve products based on larger
molecules, such as proteins (products are then generally called biologics), but
also (modified) viruses (products are then prophylactic vaccines) or even more
recently gene and cell therapies. Healthcare in general also encompass medical
devices (MD) and in vitro diagnostics (IVD), implants and much more. This
paper focuses only on therapeutic and prophylactic products, at the exception
of companion diagnostics (CDx): these IVDs are specifically used to predict
the response of a particular therapeutic or prophylactic product, and are thus
closely related to it. In some cases the product and the CDx are even designed
together.

The biopharmaceutical industry relies heavily on advanced science and tech-
nology, but at the same time is quite conservative. This is due to the simple
fact that biopharmaceutical products go into to human bodies and this implies
a heavy regulatory burden to ensure the safety of patients.

Without entering into too many details the classical lifecycle of health prod-
ucts starts with product discovery, then follows with production process develop-
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ment, clinical validation, market access (obtain authorization to sell the product,
and often also funding from health organizations or governmental agencies to pay
for these products), production, and maybe ultimately merging and acquisition
(which, finally, is driven by portfolio strategies). Most therapeutics are patented
but after about 20 years, a loss of protection for the intellectual property occurs.
At that stage, the industry often starts the development of generics (pharma)
and biosimilars (biotech).

In this tutorial, we list a series of opportunities that arise in the different
stages of health products lifecycle described above in Section (2). Section (3)
points then at the multiple specificities of the field and the constraints they
generate on the potential application of a Machine Learning (ML) approach
towards the listed opportunities. Finally, Section (4) goes over the ML methods
that are typically used to address these opportunities, and how their choice, or
the way they are implemented (for example with respect to their metaparameter
or their proper evaluation) is impacted or shaped by the identified constraints.
It is of course not possible to be exhaustive in any of these sections.

2 Opportunities

2.1 Drug discovery

Everything starts with the search for a new product. This field is heavily relying
on high-throughput molecular biology data (DNA sequencing, RNA sequencing,
imaging, proteomics etc.). A central challenge in this field is the prediction
of 3D structure and function of a molecule [2], generally larger molecules such
as proteins, based on a simpler 1D or 2D structure. Another challenge is to
acquire knowledge about a nucleic acid sequence. ML can be used in this case to
predict sites of a nucleic acid strand corresponding to splicing sites or regulatory
regions [3].

On a different note, literature about medical and biological findings has be-
come far too large to be digested by human researchers. Natural language pro-
cessing (NLP) of large domain specific corpora is thus a track of much interest
to speed up research for new drugs.

2.2 Production and Process development

During production and development of a given product, a large selection of het-
erogeneous data types are collected: descriptors of raw materials, descriptors
of the equipment used and the operations performed, QC laboratory measure-
ments, environmental monitoring data (microbiology a.o.), values in time-series
from sensors in bioreactors, fermentors or freeze-dryers, imaging of vials or sy-
ringes from the fill & finish phases and images of cultures from microscopy
devices. Multiple perspectives of usage of these data exist. ML can be used in
a yield maximisation or quality maximization perspective, to make predictions
about sources of contamination or to minimize down-time and drive preventive
maintenance. A major area of opportunity here is in ML-driven automation of
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redundant, noisy and time-consuming tasks. One such example is counting viral
foci or bacterial colony forming units in pre-clinical and technical development,
and in environmental monitoring during production. See Naets et al and Beznik
et al in this session.

ML models and feature selection algorithms are also now being retrospec-
tively applied on batch process data, in order to identify features correlated to
the yield and/or to the quality and stability of the product. The insight gained
on the process can then lead to process improvement and understanding.

Modern process development now also heavily relies on Raman optic probes
and other spectroscopy devices like near-infrared technologies generating a spec-
tra. Those techniques allow to quantify a very large amount of metabolites in
one shot of analysis and almost in real-time. However, in order to turn the spec-
tra into quantitative mg/ml measurements, blind source separation algorithms
(to denoise the spectrum) and supervised ML algorithms (correlating the peaks
in the spectra to amounts of known compounds) must be applied.

2.3 Clinical development

Clinical development is also an active playground for ML applications in multiple
scenarios. Feature selection and prediction of response or adverse events can be
used jointly to better understand the mechanisms of action of a product.

Using a multivariate model trained for a specific disease diagnosis, when the
diagnosis is complex via traditional means, can help obtaining more homoge-
neous clinical trial cohort [5].

With respect to operations, predictive modeling of disease progression for
example can be used to screen patients before their actual enrolment into a
clinical trial. In this kind of strategy, the global study population gets enriched
with strong or fast progressors (for example), which might positively impact the
global study cost, duration or cohort size [6]. Also with respect to operations,
patients recruitment curves can be predicted based on ML approaches, in order
to support cost estimates, and refine schedule of trial completion or tailor an
investigational drug supply chain to actual needs [7].

2.4 Market access

Obviously, for return on investment reasons, drug manufacturers ideally prefer
to get an indication as wide as possible for their new drug, i.e. it is better if the
drug is prescribed and funded for all individuals suffering from a given disease.
However, there is in some cases a need for targeting a specific sub-population
suffering from the disease instead. Main reason for such a choice is a lack of ef-
ficacy observed on some patients during clinical validation. A similar reasoning
holds in case of adverse events suspected to occur only in a subpopulation of pa-
tients. Whatever the reason, identifying biomarkers of response/adverse events
is a typical case where feature selection and predictive modeling are weapons
of choice. Their results will constitute the basis for what is called companion
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diagnostics. Biomarkers research will typically be based on clinical descriptors
of patients, (molecular) biology covariates, and drug safety/efficacy profiles.

Obtaining market access will also involve proving the benefit/risk ratio of a
new product which is the object of Health Technology Assessment (HTA) which
methodological aspects have been thoroughly described [4]. For therapeutic
products without CDx, the application of this methodology does not require
specific ML tasks, even if it requires data. However, when a CDx comes into
play, the setup of a sensitivity/specificity threshold for that CDx has also to
be determined. The Incremental Cost-Effectiveness Ration (ICER), which is
central to HTA, can be used as an objective function in a ML setting directly to
optimize a predictive model for the CDx.

2.5 Portfolio strategies

The biopharma industry has typically two models to develop a new drug: either
develop it in-house using internal R&D expertise, or to acquire a process and
a product developed elsewhere for scaling it up. To predict what drug to de-
velop/acquire next, or predict which candidate drug is likely to achieve success
in clinical trials can also be the subject of predictive modeling [8].

3 Specificities and constraints

The use cases listed in the previous section are fit for applications of ML tech-
niques, but is subject to a series of field-specific constraints. We list below a
series of them.

3.1 Dimensionality

ML relies heavily on three components: algorithms, computing power, and data.
Algorithms are relatively mature, and more and more ”off-the-shelf” implemen-
tations are available. Computing power has become a commodity via the numer-
ous cloud computing infrastructure providers. But at all stages of the healthcare
product lifecycle, data represent an issue: the ratio between number of features
and number of samples is most of the time very high. In clinical studies, patients
are rare and/or costly to recruit. In manufacturing, even large multinational will
only produce a few tens of product batches per year. At the same time, more
and more features are generated on each of them. The normal setting in the
field is thus ”fat data” rather than ”big data”. Having a 1000:1 ratio or more
is really frequent. Traditional statistics are not fit for such a setting, and most
ML approaches still make assumptions on statistical concepts that are thus here
difficult to estimate.

3.2 Heterogeneity

There are many ways to look at the living. Most technology platform capture
only one angle: DNA, RNA, proteins, imaging... To correctly grasp the concepts
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at hand (a drug mechanism of action, or the compatibility between donors and
receivers in cell therapy for example) will require multiple angles of view. This
will have as a consequence to generate data from heterogenous nature. Either
because of very different numerical ranges and format (images, spectrum, text,
audio, ...), or shapes of distributions (lognormal, normal, exponential), or even
information nature (binary, categorical, continuous, times-series, graph-based).
Not all ML techniques are capable of dealing with all these specificities, and the
assumptions they make might get violated by one of these characteristics.

3.3 Noise

The data in the field are affected by noise. This noise can be in the features
themselves. A spectrometer will partially be impacted by dirts or substrate,
a sample will have less well tolerated snap drying. If this error is more or
less randomly distributed, then increasing the number of samples analyzed will
allow to overcome the issue (but we said above that the field frequently lacks
samples in sufficient number). In omics data, sequencing platforms make reading
errors. The additional issue here is that these errors are not (for most platforms)
randomly distributed. As a result, increasing sample size will not remove the
issue, and it is thus very likely that an ML algorithm will detect a technology
switch rather than an actual signal of interest. The intent here is to stress
the importance of prospective experiment planning, as an integral par of ML,
specially in this field.

The noise can also be in the labels. For example image segmentation is
based on manual drawings of segmentation boundaries by experts. It is not rare
that even when working carefully, the boundaries are not perfectly drawn. As
a result, some voxels corresponding to bone for example might fall just outside
of the segmented area. This implies that the basis of the training of ML models
will be containing errors. The same appears when some biological or imaging
readouts are interpreted by a handful of experts: they do not always agree. So
to some extent, it is irrelevant in some cases to go above a certain value of
the performance metrics (because going above would imply to learn the errors
in the labels), and some other considerations might be more useful (clinical
performance, ...).

3.4 Regulatory limitations

In principle, a great opportunity of ML is the possibility of designing feedback
loops, making a model continuously learn with experience, namely from its error.
In the healthcare sector, there is almost an impossibility to benefit from ML
feedback loops in routine, for regulatory constraints. Let’s take the example of
CDx which decision would rely on a ML model. To make the product available on
the market, one has to register the device or IVD with an announced performance
rate. These performances can simply not change from day to day. Similarly, in a
production environment, if a method for screening product defaults by imaging
is implemented and validated, this method cannot change from day to day.
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Still, what is feasible is to accumulate data, and to update the model once in
a while, after having controlled its updated performance (and the associated
documentation).

Privacy is also limiting (for a good reason), the extent to which data in differ-
ent care institutions can be accessed and combined. More advanced distributed
learning approaches might then be considered [13]. These techniques are also fit
to address pre-competitive collaboration frameworks.

3.5 Others

There are yet many other limitations and challenges related to ML in biopharma
industry, such as:

• Largely unbalanced datasets.

• Biases appearing from batch of data to batch of data, making them in the
best cases logically comparable but numerically very different, sometimes
not comparable at all without specific approaches.

• Intelligibility of model predictions might be an issue for the general ac-
ceptance of this kind of approach. We can argue on the fact that this is
fair (example: most pain killers MoA are not understood, yet, they sell by
billions), but we can’t purely reject this argument.

4 Machine Learning Methods

In this section, we provide a non-exhaustive list of methodologies that help
addressing the opportunities but also taking into account the constraints above.

• Supervised classification algorithms such as deep learning, support vector
machines, nearest neighbor systems, decision trees and random forests,
partial least-square regressions. These algorithms must however be largely
adapted in order to reduce the impact of label noise [12] and of class
unbalance [9] that biomedical applications typically face.

• Blind source separation algorithms such as principal components analysis
and independent component analysis, often optimized for time series or
spectral data prefiltering [11];

• Feature selection algorithms, either embedded into the classifier (i.e. through
regularization of parameters [14] or importance metrics [17]) or as a prior
step (i.e. correlation, ANOVA, etc.) [10]; These feature selection methods
can also be used in a context of transfer learning [15] or prior knowledge
incorporation [16].

• Image processing algorithms such as U-Net and other variants improved to
adapt to bioprocess images such as microscope pictures of bacterial colony
forming units (see papers in the session from Beznik & al., Naets & al.).
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Radiotherapy and Oncology, Volume 121, Issue 3, 459 - 467

[14] Abeel T., Helleputte T., Van de Peer Y. and Saeys Y., Robust biomarker identification
for cancer diagnosis with ensemble feature selection methods, Bioinformatics, Volume 26,
No. 3, pp. 392-398. (2010)

[15] Helleputte T. and Dupont P. Feature Selection by Transfer Learning with Linear Reg-
ularized Models, European Conference on Machine Learning (ECML), Bled, Slovenia,
September 7-11, 2009.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

539



[16] Helleputte T. and Dupont P. Partially Supervised Feature Selection with Regularized
Linear Models, 26th International Conference on Machine Learning (ICML), Montreal,
Canada, June 14-18, 2009.

[17] J. Paul and P. Dupont, Inferring statistically significant features from random forests,
Neurocomputing 2015.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

540




