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Abstract. High-resolution segmentations of medical images are impera-
tive for applications such as treatment planning, image fusion or computer-
aided surgery. Nevertheless, these are often hard and time-consuming to
produce. This paper presents a method for improving the output reso-
lution of Convolutional Neural Networks (CNNs) for medical image seg-
mentation. It is straightforward to implement and works with any already
trained CNN with no modification nor retraining required. It is able to
produce better results than binary interpolation methods since it exploits
all the contextual information to predict the sought values.

1 Introduction

Segmentation in medical images is a voxel-level classification task such that all
voxels corresponding to a particular class represent a single semantical entity in
the body: an organ, a bone, a tissue, a lesion, etc. Segmentation algorithms take
an image as an input (e.g., a chest radiography), and one or several masks (e.g.,
lungs and lesions) are obtained as an output (Figure 1). These algorithms are
commonly applied to medical imaging techniques such as Magnetic Resonance
(MR), Computerized Tomography (CT) and Ultrasound (US).

CNN for automatic
prostate segmentation

Fig. 1: A CNN trained on the task of prostate segmentation takes a 3D prostate
MR image as an input and obtains a 3D prostate mask as an output.

Obtaining accurate segmentations is a very valuable yet difficult endeavor.
On one hand, segmentations are valuable as they are mandatory inputs for
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image-based diagnosis, lesion detection and treatment planning; furthermore,
for three-dimensional (3D) images, the obtained geometries can be used to per-
form simulations of the biomechanical behavior of a body, which can then be
used in image fusion, surgical planning, computer-aided surgery or bone-strength
simulations, to cite a few applications.

On the other hand though, accurate segmentations are hard and laborious
to obtain, since they have to be manually annotated by expert radiologists,
and even then, the inter- and intra-observer variations may be significant [1].
Because of this, automatic segmentation algorithms for medical images have
become increasingly prevailing.

Although several different automatic segmentation frameworks have been
suggested in the past, current state-of-the-art techniques usually employ Con-
volutional Neural Networks (CNNs) and, more specifically, those based on the
U-Net architecture [2], which has lead to segmentation accuracies above the
inter-observer threshold in increasingly more scenarios [1].

High-resolution segmentations are often essential in the aforementioned ap-
plications. However, automatic segmentation techniques tend to present two
closely related problems. Firstly, CNNs usually require the input image to be
downscaled before processing it to alleviate the Graphics Processing Unit (GPU)
memory costs associated with 3D convolutions. Secondly, so-called 3D medical
imaging techniques are often actually two-dimensional (2D) multi-slice images
instead, which are then stacked to form the final 3D geometry. These images,
however, usually have a dimension (perpendicular to all the individual 2D slices)
along which the resolution is much coarser than the rest. For instance, the MR
image in Figure 1 suffers from this inconvenience.

Even if the first problem could be solved by using a finer resolution image
as input to the CNN, the second problem remains still a challenge, since no
inter-slice information can be extracted from 2D multi-slice images in order to
perform a finer segmentation.

One possible solution would be to improve the resolution of the input im-
age in an intelligent manner, which is a problem known as super-resolution [3].
These upscaled images could then be used to train a segmentation CNN, thus
obtaining higher resolution output masks. Some works have already studied this
in the medical domain; for instance, [4] proposes a CNN to upscale 2D multi-slice
images of the heart along the axis perpendicular to the slices, achieving percep-
tible improvements. However, with this approach, the problem of GPU memory
limitations still remains. Furthermore, in order to train the CNN, many images
should be manually segmented at the new increased resolution, thus making the
process even more time-consuming.

Another possible solution is to employ binary interpolation techniques to pro-
duce a high-resolution mask from a lower resolution one. The simplest approach
is nearest-neighbor interpolation, which simply takes the value of the closest
neighbor for any given point. Even if this procedure produces very “blocky”
low-quality interpolations, it is still widely used due to its simplicity and speed.
A better approach consists in taking any kind of interpolator for real numbers
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and using it to interpolate the binary masks for each class independently; then,
the class with the highest value at any given point is used as the final label for
that point. This approach provides much smoother results and, in combination
with linear interpolation, it is also very quick. Finally, some more complex al-
gorithms have been proposed to deal specifically with the problem of inter-slice
interpolation in 2D multi-slice images, such as in [5]. However, all these methods
present one important pitfall: they completely disregard the contextual infor-
mation contained either in the original image or in the domain knowledge of
the problem. The single notable exception seems to be [6], where the authors
combine both the binary morphology and the local intensities to perform the
interpolation.

In this paper, a method for intelligent upscaling of the output mask of a
medical image segmentation CNN is proposed. This method takes into account
all the available contextual information and it is cost-free in the sense that it can
be applied to any already trained CNN with no modifications to its architecture
or any retraining required.

2 Materials and methods

The proposed method exploits a very simple yet effective idea for performing
intelligent output upscaling on already trained segmentation CNNs. It consists
in shifting the input image by several different sub-voxel amounts, feeding these
transformed images to the CNN in order to obtain the segmentation masks,
and then combining them into a single final high resolution mask. Despite its
simplicity, this procedure achieves high resolution segmentation masks which
outperform other discussed approaches (as it will be discussed in Section 3)
from already trained (an possibly low resolution) segmentation CNNs. Thus, the
problem of interpolation is shifted from the mask domain to the image domain,
where the conveyed information is still complete and not yet binarized.

For a more detailed description of the method, consider a CNN with input
and output dimensionality (or resolution) of (d1 × · · · × dN ), where N is the
number of dimensions (e.g., N = 3 for a 3D image). Suppose we wanted to
increase the output resolution along a single dimension i by an integer factor of
ki, such that the output resolution were: (d1 × · · · × di · ki × · · · × dN ).

First, we would need to generate ki − 1 images [I1, . . . , Iki−1] from the origi-
nal input image I0, each one shifted + 1

ki
voxels along dimension i with respect

to the previous one. Therefore, in order to obtain [I1, . . . , Iki−1], I0 must be
interpolated and evaluated at the positions given by the translation transforms[
(0, . . . , 1

ki
, . . . , 0), . . . (0, . . . , ki−1

ki
, . . . , 0)

]
applied to I0, where the translation

has a value of zero for all dimensions except for i. Second, all the ki images
[I0] ∪ [I1, . . . , Iki−1] are fed to the CNN one by one, and ki outputs masks
[O0, O1, . . . , Oki−1] are obtained in return. Finally, [O0, O1, . . . , Oki−1] are com-
bined by interleaving them voxel-wise along i in order to obtain a single output
mask Ocombined, which will have a ki-times higher resolution along axis i. In
this context, interleaving can be defined as stacking [O0, O1, . . . , Oki−1] to pro-
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duce Ocombined in such a way that the nth slice along dimension i in Ocombined

corresponds to the b n
ki
cth slice along dimension i of On%ki

. Figure 2 provides a
visual representation of the described methodology.
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Fig. 2: Visual representation of the method for an image of dimensions (d1, d2) =
(3, 3), for k2 = 3.

The proposed method can be extended to simultaneously improve the reso-
lution of the output mask along any number of dimensions. As an overview, a
new set of transformations T must be computed and applied to I0, by combining
in all possible ways the transformations which would be required to increase the
resolution by a factor km along a single dimension m ∈ (1, N) independently:

T =

[
(

1

k1
, 0, . . . , 0), . . . (

k1 − 1

k1
, 0, . . . , 0)

]
× · · ·

×
[
(0, . . . , 0,

1

kN
), . . . (0, . . . , 0,

kN − 1

kN
)

]
(1)

Finally, the resulting masks are combined to form the final mask. It must be
however noted that, for some positions in Ocombined there will be several possible
values due to overlap among masks. In those instances, a binary fusion function
(such as the majority vote) must be used to produce a final value.

The computational cost of the method is approximately c0 ·
∏N

i=1 ki, where c0
is the cost of interpolating an image and passing it through the CNN. This cost
comes from computing the size of the set of transformations shown in Eq. (1).
As an example, if we wanted to increase the resolution along a single axis i by
a factor of ki, the cost would be ki times the cost of obtaining a single mask in
the native CNN resolution.
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3 Results and discussion

This method was applied to a segmentation CNN trained on several datasets [7,
8] of prostate MR 2D multi-slice images, where the approximate physical voxel
spacings are (sx, sy, sz) ≈ (0.5, 0.5, 3)mm, and sz is to be improved by a factor
kz = 3 (sz = 1mm) and kz = 6 (sz = 0.5mm). Figure 3 shows a comparison
between two of the most common binary interpolation methods and the proposed
method.

The proposed method produces the smoothest results of the three, as it can
be noticed by comparing the upper slices of the prostate masks in Figure 3.
Furthermore, it does not just interpolate between slices, but rather predicts the
mask at several inter-slice levels. Therefore, it is able to obtain more accurate
results by incorporating the underlying image as input, as well as all the contex-
tual information that the CNN has learned about the problem of segmenting a
particular part of the body. Unfortunately, no numerical results can be provided,
as no ground truth is available, since all the methods are interpolating beyond
the resolution of the original image.

Fig. 3: Mask predicted by a prostate segmentation CNN and upscaled along
the z-axis using (from left to right): nearest-neighbor interpolation, Gaussian
interpolation (kz = 6), the proposed method with kz = 3 and the proposed
method with kz = 6.

This approach seems to be closely related to a technique known as Test-
Time Augmentation, wherein an already trained CNN is provided with several
randomly augmented (translated, rotated, shifted, etc.) versions of the same
input image, and the outputs are combined into a single output prediction,
which is oftentimes more accurate than any individual prediction. Similarly, the
proposed method feeds the CNN several transformed versions of the same input
and then combines all the outputs. However, by contrast, the transformations
are not random and follow instead a very precise structure which must also be
taken into account in the output combination process.

4 Conclusion and further work

This paper presents a method for intelligently improving the output resolution of
CNNs for medical image segmentation. It is better than other uspcaling methods
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since it does not perform interpolation, but rather it predicts the sub-voxel values
using the image and the context information that the CNN has encoded about
the particular problem. It can be used to improve the resolution of 2D multi-slice
images beyond the original resolution of the image, thus providing an accurate
3D segmentation for methods that require it, such as in the simulation of the
biomechanical behavior of a body. Finally, it is a very simple to implement
post-processing step that can make use of any already existing CNN with no
modifications required whatsoever.

As a main downside, the method can only improve the resolution of the
predictions of a CNN, unlike general binary interpolation algorithms, which can
upscale any binary image. Also, the computational cost of this procedure can
be high if the resolution is increased along many different axes simultaneously.
Lastly, it is not proven in any way that the results should be smooth and/or
correct, and it is instead trusted in the empirical results and the robustness
intuitions about CNN architectures.

From the ideas here presented, two main research lines arise. First, it should
be explored how well this technique generalizes to natural image segmentation
CNNs, and how useful it would be in this context. Second, and more inter-
estingly, a niche for improvement has been discovered in binary interpolation
algorithms for segmentations. Namely, almost all current binary interpolators
disregard the precious information contained in the original image to perform
the interpolation. A clever exploitation of this information could yield improved
interpolations for segmentation masks.
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