
Pyramidal Graph Echo State Networks

Filippo M. Bianchi1, Claudio Gallicchio2, Alessio Micheli2 ∗

1- NORCE - the Norwegian Research Center
2- University of Pisa

Abstract. We analyze graph neural network models that combine iter-
ative message-passing implemented by a function with untrained weights
and graph pooling operations. In particular, we alternate randomized
neural message passing with graph coarsening operations, which provide
multiple views of the underlying graph. Each view is concatenated to build
a graph embedding for graph-level classification. The main advantage of
the proposed architecture is its speed, further improved by the pooling,
in computing graph-level representations. Results obtained on popular
graph classification benchmarks, comparing different topological pooling
techniques, support our claim.

1 Introduction

A class of recent machine learning models, called Graph Neural Networks (GNNs),
learns how to represent entities and how to combine them, according to arbitrary
relationships given as part of the task inputs. GNNs leverage the structure of
the data to perform inference, by learning simultaneously the vertex’s features
and its network context, i.e. the features of vertexes in its neighborhood [2].

Global graph representations can be derived by combining at once the ver-
tex features and use them for inference on downstream tasks at graph level.
However, some networks may exhibit scale-dependent behaviors, which have to
be accounted for when solving the task. In these cases, pooling operations are
exploited to build deep GNN architectures, which compute local summaries on
the graph to gradually distill the global properties necessary for graph-level in-
ference [4, 1, 3, 11].

So far, pooling operations have been applied only to GNNs implemented
with message passing (MP) operations with parameters learned with gradient
descent from a supervised loss [7]. In this work instead, we explore the synergy of
graph pooling with randomized neural MP operations in terms of classification
accuracy and the computing time necessary to generate the graph embeddings.

We build a deep GNN composed of Graph Echo State Network (GESN) [5]
layers interleaved with graph pooling operations. Graph pooling reduces the
dimension of the graph by clustering or by dropping vertices after a propagation
operation (see Fig. 1). Since the adopted GNN architecture generates untrained
embeddings, we consider only pooling methods that pre-compute the coarsened
graphs without supervision. The potentiality of hierarchical GESN architectures
in designing fast and deep models for graph classification has been recently
shown in [6]. In this context, the benefit of pooling would be to further reduce

∗This work is funded by the mobility grant of University of Pisa.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

573

Fig. 1: After a neural message passing operation, a vertex acquires information
from its neighborhood and, thus, can be used as a local representative. The
other vertexes can be dropped since their features are now contained in the
representative, reducing the dimensionality of the graph.

the computational complexity. In the experiments, we investigate how training
time and classification accuracy change when using 3 different graph pooling
approaches, and we also compare to a similar GNN architecture without pooling.

2 Methodology

Let G = {A,X} be an undirected graph with N vertexes, characterized by a
symmetric adjacency matrix A ∈ RN×N . We define the symmetrically normal-
ized adjacency matrix Ã = D−1/2AD−1/2, where D is a diagonal degree matrix
s.t. Dii is the degree of vertex i. Let X ∈ RN×F be the matrix whose i-th row
contains the feature vector associated to the i-th vertex.

2.1 Graph ESN

Reservoir computing (RC) is an established paradigm for modeling nonlinear
temporal sequences [8]. In machine learning tasks, Echo State Networks (ESNs)
are the most popular RC model, wherein the input sequence is projected to a
high-dimensional space through the use of a (fixed) nonlinear recurrent reservoir.
Learning is applied only to a linear readout layer, whereas the dynamical reser-
voir is initialized under stability constraints and then is left untrained [8]. The
lack of supervised tuning in the recurrent part implies a range of advantages,
including faster training compared to other neural networks.

An RC model for graphs has been introduced under the name of Graph Echo
State Network (GESN) [5]. A GESN updates the vertex features according to:

H(t+1) = tanh
(
ÃH(t)W + XV

)
, (1)

where H ∈ RN×H collects the reservoir states computed for all the vertices of
an input graph, W ∈ RH×H and V ∈ RH×F are the recurrence and input
weight matrix, respectively. To build the graph embedding, (1) is iterated until
convergence to a steady state. Conditions to ensure the existence and uniqueness
of such steady state have been studied in [6]. Accordingly, elements in W are

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

574

randomly initialized from a uniform distribution in [−0.5, 0.5], and then are re-
scaled to get a spectral radius ρ < 1. Weights in V are initialized similarly and
then are re-scaled by a hyper-parameter ω. In our model, the MP operations
are implemented as in (1). When more GESN layers are stacked, input weights
of layers > 1 are re-scaled by a hyper-parameter ωin.

2.2 Graph pooling methods

Differentiable pooling operators compute cluster assignments by means of func-
tions that depend on the vertex features and are parameterized by weights
learned end-to-end, according to the data and the task at hand [11]. On the
other hand, topological pooling methods account only for the graph topology
(A) and are usually unsupervised, as they define how to coarsen the graph
outside of the learning procedure. After each MP layer, the current vertex rep-
resentations are fit to these pre-determined structures. Obviously, GNNs with
pre-computed coarsened graphs are much faster to train. In the following, we
describe the three main approaches used to perform topological graph pooling.
Graclus pooling [4] is the first approach that has been proposed to perform
pooling within a GNN architecture and consists in coarsening the graph with
Graclus, a hierarchical spectral clustering algorithm. At each layer l of the

GNN, two vertices x
(l)
i and x

(l)
j are clustered together and form a new vertex

x
(l+1)
z . Afterwards, max pooling is applied on the vertex features to be clustered

together to halve the size of the graph. If the number of vertexes in the graph is
not divisible by 2L, where L is the number of pooling operations, fake vertices
must be added so that the number of vertexes can be halved after each time.
Non-negative Matrix Factorization (NMF) pooling [1] aggregates the
vertices by clustering the rows (columns) of the adjacency matrix, rather than
performing spectral clustering. The approach is based on the NMF of the adja-
cency matrix A ≈ QS, which has the inherent property of clustering the rows
(or the columns). It is possible to interpret Q ∈ RN×K as the cluster represen-
tatives matrix and S ∈ RK×N as a soft-clustering of the columns in A. The
pooled vertex features and the coarsened graph are computed as Xpool = STX
and Apool = STXS, respectively.
Node Decimation Pooling (NDP) [3] reduces the graph by dropping the
vertices that, after an MP operation, end up containing the most similar features.
Specifically, the vertices are partitioned in two maximally similar groups via
MAXCUT. One group is dropped, while the other is kept and a new graph is built
by connecting the retained vertices by using the Kron reduction [10]. Finally,
a sparsification procedure is used to remove from the coarsened graphs edges
with small weights. Vertex pooling is performed by multiplying a decimation
matrix S, obtained by keeping in the identity matrix the rows corresponding to
the retained vertices, with the vertex features: Xpool = STX.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

575

Fig. 2: Architecture of the proposed model. After each pooling layer, all the
vertex features are summed into single vector. In turn, such vectors are concate-
nated to obtain a graph level representation φ(G).

2.3 Proposed architecture

We propose an architecture composed of L blocks. The l-th block consists of a
GESN layer, which computes the new vertex features, and a pooling layer, which

yields a pooled version of the vertex features X
(l)
pool and the coarsened adjacency

matrix A
(l)
pool. After pooling, we obtain a single vector x̄(l) =

∑
nX

(l)
pool[n, :] by

summing all the vertex features. By concatenating L of these vectors, we obtain
the final graph embedding φ(G). Fig. 2 reports a schematic depiction of the
whole procedure for L = 3.

The final graph classification is performed by a commonly used classifier for
vectorial data [9], which implements the function yi = tanh ((Wφφ(G)))Wout,
where Wφ is a randomized matrix, projecting the graph embedding into high
dimensionality. Wout are the only trainable parameters of the whole model and
learned by ridge regression with hyperparameter λ.

3 Experiments

We consider different graph classification tasks, where the i-th datum is a graph
described by the pair {Ai,Xi} and must be associated to the correct label yi. We
test the models on 5 benchmark datasets for graph classification1, i.e. MUTAG,
PROTEINS, DD, NCI1, COLLAB. For featureless graphs, we used the vertex
degree information and the clustering coefficient as surrogate vertex features.
We evaluate the model with nested cross-validation with 10 folds in the inner
and outer loop. We fixed ρ = 0.5, ω = 0.5, ωin = 0.8, L = 3 and the size of
the reservoir to H = 100, except for MUTAG where H = 50 since the samples
are few and the average number of vertices is small. In the inner loop, the
regularization parameter λ is cross-validated and chosen by model selection.

The objective of our analysis is to evaluate the trade-off between classification

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

576

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

accuracy and training time, when equipping a deep GESN model with pooling
layers. As baseline, we consider a deep state-of-the-art model [6], which we
instantiate by stacking 3 GESN layers. We compare models where the GESN
layers are interleaved by the 3 pooling operations: Graclus, NMF, and NDP.
Classification accuracy and training times computed, for each dataset, as the
average on the test folds are reported in Tab. 1. For each dataset, we also report
the relative differences in percentage with respect to the lowest training time
and highest classification accuracy. A graphical aggregation of the results is in
Fig. 3, that compares the deviations from the lowest training time (X-axis, the
smaller the better) and from the highest accuracy (Y-axis, the higher the better)
obtained as an average on all datasets.

Table 1. Classification accuracy and training time (seconds). Higher accuracy and lower
times for each dataset are in bold font.

No-pool Pool (Graclus) Pool (NMF) Pool (NDP)
Acc. Time Acc. Time Acc. Time Acc. Time

MUTAG
91.4±5.5 0.3s 88.9±6.8 0.5s 86.2±6.3 0.4s 89.4±6.0 0.2s

-0% +50% -2.7% +150% -5.6% +100% -2.2% +0%

PROTEINS
77.9±2.7 5.3s 76.2±3.8 6.2s 73.6±5.8 2.7s 76.9±2.5 2.1s

-0% +152% -2.2% +195% -5.8% +28% -1.3% +0%

DD
80.9±4.1 171.8s 78.8±6.0 119.0s 78.5±3.2 143.2s 79.6±2.8 89.3s

-0% +92.4% -2.6% +33.2% -3.0% +60.3% -1.6% +0%

NCI1
78.3±1.4 49.0s 72.6±2.7 31.7s 69.2±1.6 37.2s 74.9±1.7 35.4s

-0% +54.5% -7.2% +0% -11.6% +15.8% -4.3% +10%

COLLAB
77.5±1.6 110.9s 77.8±1.2 64.5s 74.4±1.4 51.3s 75.7±1.1 47.6s
-0.4% +57.1% -0% +26.2% -4.3% +7.2% -2.7% +0%

0 25 50 75
Relative time (%)

94

95

96

97

98

99

100

Re
la

tiv
e

Ac
cu

ra
cy

 (%
)

No-pool

Graclus

NMF

NDP

Fig. 3. Average increment (in %) in
computing time (X-axis, the lower the
better) and average decrement (in %)

in classification accuracy (Y-axis),
compared to the best performing

model on each dataset.
For each model M : X-axis =

(timeM − timemin)/timemin ∗ 100,
Y-axis = (accM/accmax) ∗ 100.

Results are computed individually on
each dataset, and then averaged.

While in fully trainable GNN architectures alternating graph convolutions
with pooling layers helps, in several tasks, to improve the classification accu-
racy [3], the same does not happen when using randomized architectures such
as GESN. However, the results show that when using pooling it is possible to
obtain a significant speed-up in computing the graph embeddings φ(G); this is

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

577

naturally obtained by the proposed construction as the 2nd and 3rd GESN layer
process a graph that has 1/2 and 1/4 of the size of the original one, respec-
tively. In particular, when the pooling procedure is implemented by NDP, it
is possible to obtain the highest speed-up and, at the same time, loosing only
a few percentage points in the classification accuracy. Indeed, NDP is based
on node decimation, which generates sparser yet well-formed coarsened graphs,
compared to the other pooling approaches based on vertex clustering.

4 Conclusions

In this paper, we performed the first exploratory experimental study on combin-
ing randomized graph convolutions with pooling operations, to obtain a graph
representations from multiple views on the graph at different level of resolu-
tions. The results show that, contrarily to fully-trainable GNNs, the proposed
models with pooling often do not improve the classification accuracy but, on
the other hand, consistently diminish the training time. In particular, when us-
ing the Node Decimation Pooling strategy, it is possible to significantly reduce
the model complexity at the cost of loosing only few points in accuracy. The
proposed model provides an advantageous trade-off in those situations where
computational resources are scarce, such as in embedded systems. Finally, our
work paved the road for further research in pooling strategies for randomized
architectures, such as the Graph Echo State Network.

References

[1] D. Bacciu and L. Di Sotto. A non-negative factorization approach to node pooling in graph
convolutional neural networks. In AI*IA 2019 – Advances in Artificial Intelligence, pages
294–306. Springer International Publishing, 2019.

[2] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. Graph neural networks with convo-
lutional arma filters. arXiv preprint arXiv:1901.01343, 2019.

[3] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. Hierarchical representation learning
in graph neural networks with node decimation pooling. arXiv:1910.11436, 2019.

[4] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, pages 3844–3852, 2016.

[5] C. Gallicchio and A. Micheli. Graph echo state networks. In Neural Networks (IJCNN),
The 2010 International Joint Conference on, pages 1–8. IEEE, 2010.

[6] C. Gallicchio and A. Micheli. Fast and deep graph neural networks. In Proceedings of
AAAI, 2020. arXiv preprint arXiv:1911.08941.

[7] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[8] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 2009.

[9] S. Scardapane and D. Wang. Randomness in neural networks: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017.

[10] D. Shuman, M. J. Faraji, and P. Vandergheynst. A multiscale pyramid transform for
graph signals. IEEE Transactions on Signal Processing, 64(8):2119–2134, 2016.

[11] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec. Hierarchical graph
representation learning with differentiable pooling. NeurIPS, 2019.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

578

	Introduction
	Methodology
	Graph ESN
	Graph pooling methods
	Proposed architecture

	Experiments
	Conclusions

