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Abstract. The increasing use of machine learning in practice and legal
regulations like EU’s GDPR cause the necessity to be able to explain the
prediction and behavior of machine learning models. A prominent exam-
ple of particularly intuitive explanations of AI models in the context of
decision making are counterfactual explanations. Yet, it is still an open
research problem how to efficiently compute counterfactual explanations
for many models. We investigate how to efficiently compute counterfactual
explanations for an important class of models, prototype-based classifiers
such as learning vector quantization models. In particular, we derive spe-
cific convex and non-convex programs depending on the used metric.

1 Introduction

Due to the recent advances in machine learning (ML), ML models are being more
and more used in practice and applied to real-world scenarios for decision mak-
ing [1]. Essential demands for user acceptance as well as legal regulations like
the EU’s ”General Data Protection Right” (GDPR) [2], that contains a ”right
to an explanation”, make it indispensable to explain the output and behavior
of ML models in a comprehensible way. As a consequence, many research ap-
proaches focused on the question how to realize explainability and transparency
in machine learning in recent years [3]. There exist diverse methods for explain-
ing ML models [4]: Local methods explain the decision for one specific input,
while global methods refer to the whole model. Model-agnostic methods act as
black-box methods, which do not need access to the training data or model in-
ternals, as opposed to model-specific technologies. Example-based explanations
rely on references to a (set of) data points to explain a prediction or behavior
of a model [5]. Alternatives refer to features, or generalizations thereof.

Counterfactual explanations constitute one popular instance of local agnos-
tic example-based explanations [6]. Given an input, a counterfactual explana-
tion represents a change of the original input that leads to a different (specific)
prediction/behavior of the ML model. Counterfactual explanations are consid-
ered to be intuitive and useful because they can be associated to the minimum
change/action which is required to achieve a desired outcome [6]. Existing coun-
terfactual explanations are mostly model agnostic methods, which are univer-
sally applicable but computationally expensive [7–9]. In this work, we address
the question how to efficiently compute counterfactuals for a popular class of
models by referring to its specific structure.
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Prototype based models such as learning vector quantization (LVQ) represent
data by a set of representative samples [10]. LVQ models can be combined with
metric learning and thereby increase the effectiveness of the model in case of
few prototypes [11,12]. Furthermore, LVQ models can be used in many settings
like life-long learning [13]. Here, we will consider the question how to efficiently
compute counterfactual explanations of prototype-based classifiers, in particular
LVQ models. By exploiting the special structure of such models, we are able to (i)
propose model- and regularization-dependent methods for efficiently computing
counterfactual explanations of LVQ models, (ii) and empirically demonstrate
the efficiency of the modeling as regards speed-up as well as required amount of
change in comparison to standard techniques. Further, the framework enables
a straightforward incorporation of domain knowledge, which can be phrased as
additional constraints.

2 Counterfactual explanations

Counterfactual explanations [6] (often just called counterfactuals) are an in-
stance of example-based explanations [5]. A counterfactual states a change to
some features/dimensions of a given input such that the resulting data point
(called counterfactual) has a different (specified) prediction than the original
input. The rational is considered to be intuitive, human-friendly and useful
because it tells practitioners which minimum changes can lead to a desired out-
come [6]. Formally, assume a prediction function h is given. Computing a
counterfactual ~x′ ∈ Rd for a given input ~x ∈ Rd is phrased as optimization
problem [6]:

arg min
~x′ ∈Rd

`
(
h(~x′), y′

)
+ C · θ(~x′, ~x) (1)

where `(·) denotes the loss function, y′ the requested prediction, and θ(·) a
penalty term for deviations of ~x′ from the original input ~x. C > 0 denotes the
regularization strength. Common regularizations are the weighted Manhattan
distance

θ(~x′, ~x) =
∑
j

αj · |(~x)j − (~x′)j | where αj > 0 (2)

and the generalized L2 distance with a symmetric positive semi-definite (s.psd)
matrix Ω

θ(~x′, ~x) = ‖~x− ~x′‖2Ω = (~x− ~x′)> Ω(~x− ~x′) (3)

Depending on the model and the choice of `(·) and θ(·), the final optimization
problem might be differentiable or not. In the black box setting general opti-
mization schemes such as Downhill-Simplex search are used [14]. Depending on
the model and regularization type, the found solution might not be unique; this
is usually referred to as Rashomon effect [14].

3 Learning vector quantization

In learning vector quantization (LVQ) models [10] we compute a set of labeled
prototypes {(~pi, oi)} from a training data set of labeled real-valued vectors - we
refer to the i-th prototype as ~pi and the corresponding label as oi. A new data
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point is classified according to the winner-takes-it-all scheme:

h(~x) = oi s.t. ~pi = arg min
~pj

d(~x,~pj) (4)

where d(·) denotes a distance function. In vanillas LVQ, this is independent
chosen globally as the squared Euclidean distance d(~x,~pj) = (~x− ~pj)>I(~x− ~pj).
There exist extensions to a global quadratic form d(~x,~pj) = (~x−~pj)>Ω(~x−~pj),
referred to as matrix-LVQ (GMLVQ), or a prototype specific quadratic form
d(~x,~pj) = (~x − ~pj)>Ωj(~x − ~pj), referred to as local-matrix LVQ (LGMLVQ).
Since we are interested in the functional form of the model only, we do not refer
to specific training mechanisms of these models [11,12].

4 Counterfactual explanations of LVQ models

General approach: We aim for an efficient explicit formulation how to find
counterfactuals, for diverse LVQ models. The specific form of LVQ models en-
ables us to decompose the problem into a number of simpler ones as follows:
Being a winner-takes all scheme, the nearest prototype ~pi of a counterfactual ~x′

must be labeled oi = y′. Hence a counterfactual ~x′ of a given input ~x can be
obtained by the following optimization problem

arg min
~x′ ∈Rd

θ(~x′, ~x) (5a)

s.t. d(~x′, ~pi) ≤ d(~x′, ~pj)− ε ∀~pj ∈ P(y′) (5b)

where P(y′) denotes the set of all prototypes not labeled as y′ and ε > 0 is a small
value preventing that the counterfactual lies exactly on the decision boundary.
We solve this problem for each prototype ~pi with oi = y′ and select the counter-
factual ~x′ yielding the smallest value of θ(~x′, ~x) as solution. Note that problem
Eq. (5) has always a feasible solution, the prototype ~pi itself. Furthermore, in
contrast to Eq. (1), the formulation does not include hyperparameters.

For the weighted Manhattan distance as a regularization θ(·), the objective
Eq. (5a) becomes linear in ~x′, where Υ is the diagonal matrix with entries αj
and ~β is an auxiliary variable that can be discarded afterwards:

min
~x′,~β ∈Rd

~1>~β s.t. Υ~x′ −Υ~x ≤ ~β, −Υ~x′ + Υ~x ≤ ~β, ~β ≥ ~0 (6)

For the Euclidean distance Eq. (3) as regularization θ(·), the objective Eq. (5a)
can be written in a convex quadratic form:

min
~x′ ∈Rd

1

2
~x′>~x′ − ~x′>~x (7)

In the subsequel we explore Eq. (5) for different regularizations θ(·) and LVQ
models, and investigate how to solve it efficiently.1.

1See https://arxiv.org/abs/1908.00735 for details of the computation
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Global quadratic form: For GMLVQ models, problem Eq. (5) becomes a
linear program (LP) when using the weighted Manhattan distance as a reg-
ularizer, and a convex quadratic program (QP) problem when using the Eu-
clidean distance. Both models can be solved efficiently and (up to equivalence)
uniquely [15]. More precisely, the constraints Eq. (5b) can be written as a set of
linear inequality constraints:

~x′>~qij + rij + ε ≤ 0 ∀~pj ∈ P(y′) (8)

where

~qij =
1

2

(
Ωj~pj −Ωi~pi

)
rij =

1

2

(
~p>
i Ωi~pi − ~p

>
j Ωj~pj

)
(9)

Local quadratic form: For LGMLVQ models with prototype specific dis-
tance matrix Ωp, the optimization problem Eq. (5) becomes a quadratically
constrained quadratic program (QCQP) for Manhattan and Euclidean regular-
ization, since the constraints Eq. (5b) become a set of quadratic constraints:

1

2
~x′>Qij~x

′ + ~x′>~qij + rij + ε ≤ 0 ∀~pj ∈ P(y′) (10)

where
Qij = Ωi −Ωj (11)

Because we can not make any statement about the definiteness of Qij , the con-
straints Eq. (10) are quadratic but non necessarily convex. Therefore, optimiza-
tion might be challenging since non-convex QCQP is NP-hard in general [16].
However, there exist methods like the Suggest-Improve framework [16] that can
efficiently find good solutions.

Experiments: We empirically confirm the efficiency of our proposed methods
in comparison to black-box mechanisms by means of the following experiments:
We use GLVQ, GMLVQ and LGMLVQ models with 3 prototypes per class for the
”Breast Cancer Wisconsin (Diagnostic) Data Set” [17], the ”Optical Recognition
of Handwritten Digits Data Set” [18] and the ”Ames Housing dataset” [19].
Thereby, we use PCA-preprocessing 2 to reduce the dimensionality of the digit
data set to 10 and of the breast cancer data set to 5. We standardize the house
data set and turned it into a binary classification problem3 by setting the target
to 1 if the price is greater or equal to 160k$ and 0 otherwise. The implementation
of our proposed method for computing counterfactual explanations is available
online4. We use the Suggest-Improve framework [16] for solving the non-convex

2This is for the purpose of better stability and better semantic meaning, since in the original
domain already a small perturbation is sufficient for changing the class, since adversarial
attacks exist even for linear functions in high dimensions if feature correlations are neglected.
Since PCA can be approximately inverted, counterfactuals in PCA space can be lifted to the
original data space.

3In addition, we select the following features: TotalBsmt, 1stFlr, 2ndFlr, GrLivA, Wood-
Deck, OpenP, 3SsnP, ScreenP and PoolA - When computing counterfactuals, we fix the last
five features.

4https://github.com/andreArtelt/efficient_computation_counterfactuals_lvq
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Data set Breast cancer Handwritten digits House prices
Method DS CMA Ours DS CMA Ours DS CMA Ours
GLVQ 3.26 3.28 1.96 6.51 6.53 3.99 3.81 3.85 3.32

GMLVQ 2.71 6.49 2.46 21.34 11.63 4.40 5.06 8.63 3.78
LGMLVQ 2.00 1.61 1.57 8.12 7.88 7.53 12.74 12.59 8.20

Table 1: Mean Manhattan distance between the counterfactual and the original
data point - best (smallest) values are highlighted. For LGMLVQ with DS or
CMA-ES (marked italic), in 5% to 60% of the cases no solution was found.

QCQPs, where we pick the target prototype as initial solution in the Suggest-
step and we use the penalty convex-concave procedure (CCP) in the Improve-
step [16]. For comparison, we use the optimizer for computing counterfactual
explanations of LVQ models as implemented in ceml [20] - where the distance
to the nearest prototype with the requested label y′ is minimized by Downhill-
Simplex search or CMA-ES.

We report results for the Manhattan distance as regularizer - we used the
Manhattan distance for enforcing a sparse solution. For each possible combina-
tion of model, data set and method, a 4-fold cross validation is conducted and
the mean distance is reported. The results are listed in Table 1. In all cases,
our method yields counterfactuals that are closer to the original data point than
the one found by minimizing the original cost function Eq. (1) with Downhill-
Simplex search (DS) or CMA-ES. In addition, our method is between 1.5 and
158.0 faster in comparison to DS/CMA-ES method. Furthermore, Downhill-
Simplex and CMA-ES did not always find a counterfactual when dealing with
LGMLVQ models. We would like to remark that our formulation can easily be
extended by linear/quadratic constraints which can incorporate prior knowledge
such as a maximum possible change of specific input features - see Table 2 for an
example. Such extensions do not change the form of the optimization problem
hence its complexity.

5 Conclusion

We proposed, and empirically evaluated, model- and regularization-dependent
convex and non-convex programs for efficiently computing counterfactual expla-
nations of LVQ models. We found that in many cases we get either a set of linear
or convex quadratic programs which both can be solved efficiently. Only in the
case of localized LVQ models we have to solve a set of non-convex quadrat-
ically constrained quadratic programs - we found that they can be efficiently
approximately solved by using the Suggest-Improve framework.

Data point TotalBsmt 1stFlr 2ndFlr GrLivA Label
Original 0 1120 468 1588 1

Counterfactual 0 366 1824 2225 0
Constrained Counterfactual 373 1454 1454 3125 0

Table 2: House prices, we obtain a ”plausible” counterfactual by adding con-
strains, here the constraint ”2ndFlr ≤ 1stFlr” is added.
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