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Abstract. How the brain transforms binaural, real-life sounds into a neu-
ral representation of sound location is unclear. This paper introduces a
deep learning approach to address these neurocomputational mechanisms:
We develop a biological-inspired deep neural network model of sound az-
imuth encoding operating on auditory nerve representations of real-life
sounds. We explore two types of loss functions: Euclidean distance and
angular distance. Our results show that a network resembling the early
stages of the human auditory pathway can predict sound azimuth location.
The type of loss function modulates spatial acuity in different ways. Fi-
nally, learning is independent of environment-specific acoustic properties.

1 Introduction

Humans use spatial hearing to rapidly localize events in the environment, and to
separate sound sources in multi-source listening environments (e.g. to filter out
the voice of an acquaintance in a noisy bar). Despite extensive research into hu-
man sound localization, it remains unclear how the brain computes the location
of real-life sounds in real-world listening environments. Specifically, empirical
studies of neural sound location processing mainly focus on simple sounds (e.g.
noise bursts) in controlled listening environments (e.g. without reverberation)
that have little ecological validity [1]. In addition, computational studies inves-
tigating the representational mechanisms of neural sound location encoding are
sparse [1][2]. Here, we explore a biological-inspired deep neural network (DNN)
model that estimates the location of real-life sounds in real-world listening sit-
uations. Such a model can be used in future empirical studies to investigate
the complex computational and representational mechanisms underlying neural
location encoding of real-life sounds in humans.

1.1 Existing DNNs and present approach

Deep neural networks developed in the context of computational environmental
audio analysis are highly successful, with error scores on combined azimuth-
elevation estimation as small as 3o (even in reverberant listening conditions
[3]). Although the specific architectures vary, most models consist of a number
of convolutional layers followed by one or multiple recurrent layers, and use a
multi-output regression task to estimate sound location on a continuous scale in
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Cartesian coordinates [3][4]. However, these models differ from neurobiological
sound location processing in humans: Input is typically derived from microphone
arrays (consisting of four or more channels), while human hearing is based on
binaural (i.e. two-channel) input. Moreover, most models do not receive sound
waves as input but a priori extracted features such as phase, time, or spectral
inter-channel differences [3][4].

Here, we aim to develop a DNN that resembles the functioning of the early
stages of the human auditory pathway. DNN models are ideally suited for study-
ing neurobiological systems because they operate in a hierarchical manner ab-
stracting from simple to more complex representations akin to neural encoding
of sensory stimuli. Further, DNNs use an input-driven learning procedure to
extract relevant features and thus avoid making a priori assumptions relevant
features [5].

Fig. 1: Spatial hearing. (A) Binaural disparity cues in humans. (B) Human
spatial hearing acuity indicated by the green to red color scale. (C) Schematic
overview of human subcortical auditory pathway. CN = cochlear nucleus; SOC
= superior olivary complex; LL = lateral lemniscus; IC = inferior colliculus. (D)
Azimuth locations included in the present study.

1.2 Human sound location processing

Human spatial hearing acuity is highest around the interaural midline and dete-
riorates towards the sides and back [6][7]. Humans localize sound sources in the
horizontal plane using binaural spatial cues: Interaural time and level differences
(ITDs and ILDs; Fig. 1A). Processing and computing of these cues occurs in
the subcortical auditory pathway, with binaural integration starting at the level
of the superior olivary complex (Fig. 1 B). At the level of the inferior colliculus
(IC), extraction and computation of spatial cues is mostly completed [8].

2 Methods

2.1 Data generation and pre-processing

We created a database of spatialized real-life sounds in different listening scenes.
Sound clips were spatialized to 36 locations covering the entire azimuth (eleva-
tion = 0o) at an angular resolution of 10o (starting from 0o, Fig. 1 D). At every
azimuth location, we randomly sampled 500 sound clips out of a database of
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6,500 mono audio clips (1 s) of real-life sounds such as speech, music, animal
sounds, nature, tools, and urban environments. Sound clips were spatialized to
the relevant azimuth location in two acoustic environments in order to encourage
the network to learn sound location irrespective of environment-specific acoustic
properties (e.g. differences in reverberation). To this end, we simulated an ane-
choic environment without any reverberation, and a large lecture hall containing
early and late reflections. We used a head related transfer function (HRTF) de-
scribing human binaural hearing, and a binaural room impulse response (BRIR)
capturing the combination of listener and room specific acoustic properties [9].
We randomly divided the sounds at each azimuth location into two sets corre-
sponding to the two acoustic environments (N = 250 each). Using a model of
cochlear sound processing [10], we then converted each stereo sound clip into
the output of the left and right cochlea. This corresponds to a spectrogram
representation of the sound wave at the temporal and spectral resolution of the
auditory nerve (AN) fibers.

2.2 Neural network architecture

The DNN architecture developed here is a simplified representation of the first
stages of the subcortical auditory pathway (Fig. 1 C). Bilateral AN representa-
tions are fed to the neural network and the first layer consists of two uncoupled
branches that operate on the left and right AN representation, respectively (Fig.
2). Here, frequency invariant features in the AN representations are learned us-
ing a 2D convolutional layer (CNN) with 16 kernels (size 1 x 3) with a rectified
linear unit (ReLu) activation function. The dimensionality of the output of the
CNN layer is reduced along the frequency axis using max pooling (pool size =
1 x 2). Next, the two branches are merged by concatenating the feature maps
of the left and right branch along the channel axis. This resembles binaural in-
tegration in the right olivary nuclei (Fig. 1 C). The concatenated feature maps
are then used as input to the next 2D CNN layer. This layer learns time and fre-
quency invariant features from the merged representation using 32 kernels (size
3 x 3) with a ReLu activation function. We reduced dimensionality further along
both the time and frequency axis using max pooling (pool size = 2 x 2). After
flattening, the output activation of the CNN layer is fed into a fully connected
(FC) layer with 2 nodes corresponding to the two outputs (x and y coordinates)
and a tanh activation function.

Fig. 2: Proposed DNN architecture.
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2.3 Training procedure

We trained the DNN using four different loss functions: mean square error
(MSE), angular distance (AD), a combination with equal weight for MSE and
AD, and a combination in which MSE was given twice the weight of AD. The
mean square error (MSE) is commonly used in DNN approaches to sound lo-
calization [3][4] and minimizes the Euclidean distance between two points in 2D
Cartesian x,y-coordinates:

MSE =
1

n

n∑
i=1

(x̂i − xi)2 + (ŷi − yi)2 (1)

Here, x̂i, ŷi refers to the predicted x,y-coordinates, and xi, yi to the actual
x,y-coordinates (i.e. the label). However, as MSE is not dependent on the
direction of the distance we also implemented a novel approach by training the
model using AD as a loss function, or a combination of MSE and AD.

AD =
cos−1(

∑n
i=1(x̂i,ŷi)(xi,yi)√∑n

i=1(x̂i,ŷi)2
√∑n

i=1(xi,yi)2
)

π
(2)

Sounds were divided into a train (80%) and test (20%) set. We trained
the network using Adam optimizer (default parameters) and early stopping (10
epochs). The network was implemented with Keras with a Tensorflow backend.

3 Results

3.1 DNN predictions of azimuth location

Model performance was evaluated on an unseen data set of 1,800 sounds (50 per
location) using MSE and AD as evaluation metrics. As the proposed DNN is −
to the best of our knowledge − the first biological-inspired DNN operating on
binaural auditory nerve representations, there is no clear baseline to evaluate the
model against. Non-biological-inspired DNNs operating on four channel-input
currently achieve direction of arrival (DOA) error scores smaller than 10o[3].

Table 1 shows that in terms of average Euclidean distance, the MSE loss
function performs best, the AD loss function worst, and the combinations in
between. In terms of angular distance, the difference between the models is
smaller. Moreover, azimuth predictions for the evaluation data set reveal that
the angular distance varies per target azimuth (Fig. 3). At a number of azimuth
locations, the AD loss function or the combination of AD and MSE have a
comparable or lower angular distance than the model trained with the MSE loss
function. Further, Figure 4 shows that prediction accuracy is not dependent on
acoustic environment. This indicates that learning is robust to room-specific
acoustic properties.
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Loss: γ1MSE+γ2AD Euclidean distance (MSE) Angular distance (AD)
γ1 = 1,γ2 = 0 0.13 18.0o

γ1 = 0,γ2 = 1 0.27 21.4o

γ1 = 1,γ2 = 1 0.18 17.7o

γ1 = 2,γ2 = 1 0.17 19.9o

Table 1: Evaluation metrics per loss function

Fig. 3: Azimuth location predictions for evaluation set. (A) Predicted azimuth
location by the DNN trained with an MSE loss function, averaged across the
evaluation data set (circles) for a given target azimuth (triangles). Colors indi-
cate target azimuth for each predicted azimuth. (B) Same as (A) but for the
DNN trained with an AD loss function. (C) Mean angular distance as a function
of target azimuth. Error bars represent standard error of the mean.

4 Conclusion and future work

Here we explored a biological-inspired DNN-model trained with different loss
functions. Our results show that this approach is successful and that the type
of loss function affects acuity of location estimates. Although prediction errors
are somewhat larger overall than human spatial hearing acuity, the pattern of
prediction errors resembles human localization behavior [6][7], with the exception
of the relatively high error at frontal locations. In future work, we will expand our
current approach by exploring different DNN architectures and loss functions.
Further, we will test how learning transfers to unseen acoustic environments with
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different reverberation characteristics. Ultimately, we aim to arrive at a DNN
that can be used as a neurobiological model for investigating the transformation
from binaural sound to neural representation of sound location in humans.

Fig. 4: Angular distance as a function of acoustic environment. Boxes show the
results between the 25th and 75th percentile. The line inside the box reflects
the median, and the lower and upper error bars the 10th and 90th percentiles.
Crosses reflect data falling outside the 90th percentile.
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[9] Fritz Menzer, Christof Faller, and Hervé Lissek. Obtaining binaural room impulse re-
sponses from b-format impulse responses using frequency-dependent coherence matching.
IEEE Transactions on Audio, Speech, and Language Processing, 19(2):396–405, 2010.

[10] Roy D Patterson, KEN Robinson, John Holdsworth, Denis McKeown, C Zhang, and
Michael Allerhand. Complex sounds and auditory images. In Auditory physiology and
perception, pages 429–446. Elsevier, 1992.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. 
Available from http://www.i6doc.com/en/.

526




