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Abstract.

Machine Learning (ML) is becoming a more and more popular field of
knowledge, being a term known not only in the academic field due to its
successful applications to many real-world problems. The advent of Deep
Learning and Big Data in the last decade has contributed to make it even
more popular. Many companies, both large ones and SMEs, have created
specific departments for ML and data analysis, being in fact their main
activity in many cases. This current exploitation of ML should not mislead
us; while it is a mature field of knowledge, there is still room for many novel
contributions, namely, a better understanding of the underlying Mathe-
matics, proposal and tuning of algorithms suitable for new problems (e.g.,
Natural Language Processing), automation and optimization of the search
of parameters, etc. Within this framework of new contributions to ML,
Quantum Machine Learning (QML) has emerged strongly lately, speeding
up ML calculations and providing alternative representations to existing
approaches.

This special session includes six high-quality papers dealing with some
of the most relevant aspects of QML, including analysis of learning in
quantum computing and quantum annealers, quantum versions of classical
ML models —like neural networks or learning vector quantization—, and
quantum learning approaches for measurement and control.

1 Introduction

Machine Learning (ML) has probably become the most usual choice to analyze
data sets in order to extract useful knowledge from them. ML is well founded
mathematically speaking and, hence, it can come up with robust and sound
solutions to data analysis whose conclusions are supported by a strong mathe-
matical basis [1, 2, 3]. ML applications have increased exponentially in the last
decade [4, 5], not only at an academic level but also in commercial applications
with more and more companies specialized or with departments devoted to this
topic.

Quantum information (QI) and Quantum Computing (QC) are also very
fruitful and popular fields of research [6]. Researchers have been struggling for a
long time in order to achieve the so-called quantum advantage, i.e., to come up
with a QC-based solution that can be obtained within a reasonable amount of
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time for problems that will be impossible to be solved by a classical computer in
a human life time; the recent paper [7] claims to have attained this milestone for
the first time in the task of sampling the output of a pseudo-random quantum
circuit.

Adiabatic quantum computing is another approach to QC that has already
shown a considerable speed-up in some instances compared to classical compu-
tational approaches thanks to its capability of finding the global optimum of a
given cost function, thus circumventing the problem of local minima [8].

To have a general overview of QC, one needs to know that is driven by the
quantum bits (qubits), a quantum generalization of the classical bit. The two
basic states of a qubit are |0) and |1), which correspond with the states zero and
one, respectively, of a classical bit. A qubit |¥) generalizes its classical counter-
part because it allows states formed by the superposition of |0) and |1}, namely,
|¥) = a|0) + 5 |1), where o and 8 are complex coefficients. The measurement
of a qubit in superposition state involves that it will collapse to one of its basic
states, but there is no way to determine in advance which one; the unique avail-
able information is that the probability of |0) is |a|? and the probability of |1)
is |8]?, hence, |a|? + |3|> = 1. The main operation when dealing with qubits is
the unitary transformation U. When U is applied to a superposition state, the
result is another superposition state which is the result of superposing all basis
vectors. This is an appealing characteristic of unitary transformations, which is
called quantum parallelism because it can be employed to evaluate the different
values of a function f(z) for a given input z at the same time. However, this
parallelism is not immediately useful [6], since the direct measurement on the
output generally gives only f(x) for one value of x. Let |y) be in the superpo-
sition state |y) = «|0) + §|1). The unitary transformation U, may be defined
as:

Uy : 1y,0) = |y, f()) (1)

where |y, 0) stands for the joint state with the first qubit in |y) and the second
qubit in |0) and |y, f(y)) is the corresponding joint output state. Therefore:

Uy : [y, 0) = 0, £(0)) + 81, £(1)) (2)

that contains simultaneous information of f(0) and f(1), i.e., two different val-
ues of f(z). This process is known as oracle or quantum black box; it can
process quantum superposition states with an exponential speed-up compared
to classical inputs [9]. The idea can be extended to an n-qubit system:

9) = 191) ® [¥2) ® ... ® [¥y) 3)

where ® is the tensor product. The system shown in Eq. (3) can simultaneously
process 2" states but only one of them could be accessible by means of a direct
measurement. The key aspect here is how to exploit this parallelism without
destroying the superposition.

Both fields, QC and ML have lately converged towards a new discipline,
Quantum Machine Learning (QML) [10], that brings together concepts from
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both fields to provide enhanced solutions, either improving ML algorithms, quan-
tum experiments, or both. Two main approaches can be considered:

1. The use of quantum resources to improve learning, usually in terms of
speed-up, but also giving alternative representations to deal with modeling
and learning. We can also deem here the implementation of ML algorithms
in quantum computers, including adiabatic quantum annealers.

2. The application of classical ML approaches to quantum experimentation
problems, such as quantum metrology [11].

Although this special session is not the first attempt to join efforts from the
fields of ML and QC, interdisciplinary collaboration is still scarce, as a matter of
fact. Therefore, the organizers have tried to attract papers from relevant groups
in the field in order to publish last developments, facilitate its access by other
researchers and encourage networking.

The rest of the paper is outlined as follows. Section 2 presents the most
common approaches within QML, including a number of relevant references.
Section 3 gives an overview of the papers accepted in this special session, all of
them with a high scientific quality. This tutorial ends up in Section 4 with some
conclusions and perspectives for the field in the near future.

2 Quantum Machine Learning

This section aims at setting the framework of the special session by means of
briefly describing some of the most popular QML approaches as a previous step
to introduce the papers of the session. It can be considered that there are two
main views of QML depending on the beholder; either what QC and QI can
do for ML (Section 2.1) or the relevance of ML in quantum experimentation
(Section 2.2).

2.1 A quantum insight of Machine Learning

Many scientific works have explored the the benefits of applying quantum meth-
ods to learning algorithms in the last few years [12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23]. Although the main goal has been the reduction of the compu-
tational complexity, many works have also focused on the possibility of coming
up with alternative data representations and novel approaches to tackle prob-
lems that result in different solutions to those provided by classical ML, usu-
ally outperforming the latter. Some examples include quantum Reinforcement
Learning (RL) [23, 24], quantum nonlinear modeling [15, 25, 26, 27], quantum
clustering [19, 20, 28], quantum speed-up for active learning [29] or quantum
autoencoders [21], to name a few.

A very relevant topic is also the analysis of how the different types of learning
(inductive, transductive, active, supervised, unsupervised, reinforced or semi-
supervised) map to quantum processes in general, and the suitability of each
kind of learning to different environments. The aforementioned references deal
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with supervised, unsupervised and reinforced approaches. Actually, an accurate
definition of learning in quantum environments is not trivial, as difficulties not
present in the classical realm may arise, e.g., a learning agent being entangled
with the environment while the main assumption in the classical case is that
they are independent of each other. It may make sense to propose new quan-
tum oracles as the widely studied standard classical ones do not meet all the
requirements and nuances of quantum environments.

Finally, it is also worth mentioning quantum annealing (adiabatic quantum
computing). The fact of increasing the number of qubits is obviously allowing
more complex calculations involving relevant knowledge discovery [30]. Its ap-
plication in learning problems [13] has also been tested successfully. However,
one should also be aware of implicit imperfections; although it is possible to
violate the limits imposed by the gap in the adiabatic evolution and perform the
process at a temperature higher than necessary, the result might be a low-level
excited state instead of the the ground state; this is still very useful for ML but
should be taken into account.

2.2 Machine Learning for Quantum Information and experimenta-
tion

Classical ML algorithms can be applied to problems in the field of quantum
information. This is a topic whose interest has increased considerably recently.
One of the first promising results is related to the application of RL to adaptive
quantum metrology [31], where a RL-based control of quantum processes outper-
forms standard greedy approaches. RL has also been applied in the field of QC
for online nonconvex optimization in circuit simulations [32] and ultra-cold-atom
experiments [33].

Another application of RL in QC involved measure control [11]. In fact,
this is a topic of paramount relevance because the data encoded on a quantum
state might be difficult to access in order to carry out any kind of computation;
therefore, addressing this issue may be very helpful in order to generalize classical
results to the quantum realm. In this framework, there have been a couple
of recent efforts to set active learning for quantum experimentation due to its
appealing characteristics in this environment, as only the most relevant labels
are required thus minimizing the number of measures that make superposition
states collapse [34, 35].

How close one can get to the theoretical bounds using classical ML algorithms
for quantum processes is an area that still needs more exploration. Although
ML and computational theory has already shown its usefulness in given quantum
scenarios, the definition of new learning paradigms in which all the elements are
quantum is a promising research avenue, that can set the foundations of a theory
for knowledge discovery in quantum systems.

Related to that is the fact of applying ML to extract information from phys-
ical systems (classical and quantum) not necessarily linked to quantum informa-
tion processing. Many fields of Physics involve the acquisition of huge amounts
of data that can be smartly analyzed by ML methods [36]. Some recent works
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show indeed the capability of ML to model complex physical systems with great
accuracy and with the added advantage of its flexibility in contrast with the
classical models applied in Physics that tend to follow a very restricted formu-
lation [37, 38, 39, 40]; therefore, ML may have the capability of including in its
modeling some nuances that might be present in the data but have not yet been
explicitly considered in previous formulations and modeling approaches to the
problems.

Within this collaborative field that brings together ML and Physics, some
works have recently proposed the use of the so-called Physics-based ML [41, 42],
i.e., ML methods that are usually applied to Physics problems and with the
appealing characteristic of being inspired in physical concepts. Although this
is not something new, since classical ML methods like the Hopfield neural net-
work [43] or Boltzmann machines [44] have a fundamental physical inspiration,
the current massive use of ML techniques by physicists have boosted this kind
of approaches.

3 Contributions to the 28" ESANN special session on
Quantum Machine Learning

Six contributions were accepted to be part of the special session “Quantum Ma-
chine Learning” at ESANN 2020. The top level of all those contributions should
be stressed, given the low acceptance ratio of the conference. The accepted pa-
pers are related to the different approaches described in previous sections, and
are summarily described next.

3.1 Learning algorithms

Although all the papers deal with learning one way or another, two of them are
especially focused on learning algorithms. An analysis of training Boltzmann
machines from the point of view of statistical physics’ is presented in [45]. In
particular, the authors show the unsuitability of training models in spin-glass
regime and propose an alternative method to train spin models without an exten-
sive sampling; this is illustrated by studying the effects of initializing Boltmann
machines in a simple sampling regime with successful results although the frus-
tration control may also involve some setbacks in training methods based on
Gibbs sampling.

A quantum-inspired version of the well-known Generalized Learning Vector
Quantization (GLVQ) is proposed in [46]. It starts by transforming the main
elements of GLVQ, namely, data and prototypes, into quantum bit vectors with
n dimensions defined in the corresponding Hilbert space H, whose properties
restrict prototype updates to unitary transformations; the resulting model is
called Quantum GLVQ (QuGLVQ). The non-linear transformation shows obvi-
ous mathematical equivalence to kernel approaches in topological sense. The
good results achieved in different data sets encourage a deeper analysis of the
algorithm maybe including entanglement of qubits.
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3.2 Control and measurement

Two of the papers of the session deal with a topic commonly addressed in quan-
tum systems, which is control and measurement. One of the papers [47] faces the
complicated task of setting a framework to relate classical and quantum realms
in terms of learning and control. The framework is then applied to a quantum
adaptive phase estimation problem that is characterized by supervised learning
making use of both classical and quantum control theories in unison. The main
contribution of this paper is to bring together both classical and quantum control
aspects in a unified quantum learning environment.

Quantum Convolutional Neural Networks (QCNN) for image recognition are
analyzed in [48]. In spite of the architecture restrictions imposed by Noisy
Intermediate-Scale Quantum (NISQ) computers, the achieved results are very
accurate and encourage carrying on this line of research. The intermediate
measures to reduce dimensionality deserve a deeper research, as an appropri-
ate choice will likely enhance the performance of QCNN.

3.3 Learning in quantum computers

QC is a fascinating field for the intellectual challenges to overcome from the
scientific and technological point of view. On top of that, the big bet in this
topic by some of the most relevant technological companies of the world has
increased even more its popularity, appearing even in generic newspapers, radio
stations or TV channels, thus making QC a common conversation topic not
only for scientists and engineers but also for anyone with some scientific and
technological inquisitiveness.

Two papers of the session are related to QC. A quantum algorithm that
implements a classical perceptron neuron is presented in [49]. The algorithm,
tested in an IBM quantum computer, is able to carry out simple tasks related
to classification and image recognition. The authors claim that the approach
can be extended from a single neuron to a Multilayer Perceptron whose higher
modeling capability could set the basis to run quantum artificial intelligence
models in current NISQ computers. As the approach presented here still has
some classical parts, a hybrid classical-quantum approach could be the most
convenient solution making use both of traditional hardware and quantum com-
puters. Nonetheless, running the network in a fully quantum coherent way would
lead to the possibility of setting the network in a superposition state for different
parameters of its neurons thus paving the way for using quantum algorithms in
the training of neural networks.

The interesting topic of archetypes is addressed in [50], i.e., those data points
that can represent the whole data set thus providing a useful knowledge and in-
terpretability of the faced problem. The authors implement the method to obtain
archetypes and allocate data points in a D-Wave’s 2000Q Quantum Annealer,
obtaining similar results to those that can be obtained using classical methods.
The research is still in progress with a number of issues still to be addressed.
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4 Conclusions

This tutorial has presented an overview of the current state of QML, an emergent
research and technological topic that brings together concepts from QI, QC
and ML. The contributions to the special session are briefly described; they
are relevant and novel works carried out by authors that have undoubtedly
something to say in this field. The great development experienced by QC, partly
due to the involvement of giant technological companies and the popularity and
success of ML have been responsible of making QML one of the main streams
for researchers working on fuzzy borders between Physics, Mathematics and
Computer Science.

We reckon that future research should entail a joint collaborative work be-
tween ML practitioners and physicists because most of the progresses so far have
been based on analyzing either what ML can do for QC and QI or how quan-
tum approaches can enhance ML algorithms. However, few attempts have been
done with a unified perspective that could lead to robust definitions of quantum
learning. Another result of this collaboration could be the proposal of new al-
gorithms to efficiently analyze data while exploiting quantum properties at the
same time and with the possibility to be implemented in quantum computers or
quantum annealers.
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